Статические и динамические, дискретные и непрерывные модели
Похожие статьи вашей тематики
Статические и динамические, дискретные и непрерывные модели
Классификацию моделей проводят по различным критериям.
Модель называется статической, если среди параметров, участвующих в ее описании, нет временного параметра. Статическая модель в каждый момент времени дает лишь "фотографию" системы, ее срез.
Пример. Закон Ньютона F=a*m - это статическая модель движущейся с ускорением a материальной точки массой m. Эта модель не учитывает изменение ускорения от одной точки к другой.
Модель динамическая, если среди ее параметров есть временной параметр, т.е. она отображает систему (процессы в системе) во времени.
Пример. Динамическая модель закона Ньютона будет иметь вид:
F(t)=a(t)*m(t).
Модель дискретная, если она описывает поведение системы только в дискретные моменты времени.
Пример. Если рассматривать только t=0, 1, 2, …, 10 (сек), то модель
St=gt2/2
или числовая последовательность: S0=0, S1=g/2, S2=2g, S3=9g/2,:, S10=50g может служить дискретной моделью движения свободно падающего тела.
Модель непрерывная, если она описывает поведение системы для всех моментов времени некоторого промежутка времени.
Пример. Модель S=gt2/2, 0 < t < 100 непрерывна на промежутке времени (0;100).
Модель имитационная, если она предназначена для испытания или изучения возможных путей развития и поведения объекта путем варьирования некоторых или всех параметров модели.
Пример. Пусть модель экономической системы производства товаров двух видов 1 и 2, в количестве x1 и x2 единиц и стоимостью каждой единицы товара a1 и a2 на предприятии описана в виде соотношения:
a1x1 + a2x2 = S,
где S - общая стоимость произведенной предприятием всей продукции (вида 1 и 2). Можно ее использовать в качестве имитационной модели, по которой можно определять (варьировать) общую стоимость S в зависимости от тех или иных значений объемов и стоимости производимых товаров.
Детерминированные и стохастические модели
Модель детерминированная, если каждому входному набору параметров соответствует вполне определенный и однозначно определяемый набор выходных параметров; в противном случае - модель недетерминированная, стохастическая (вероятностная).
Пример. Приведенные выше физические модели - детерминированные. Если в модели S = gt2 / 2, 0 < t < 100 мы учли бы случайный параметр - порыв ветра с силой p при падении тела:
S(p) = g(p) t2 / 2, 0 < t < 100,
то мы получили бы стохастическую модель (уже не свободного) падения.
Функциональные, теоретико-множественные и логические модели
Модель функциональная, если она представима в виде системы каких- либо функциональных соотношений.
Модель теоретико-множественная, если она представима с помощью некоторых множеств и отношений принадлежности им и между ними.
Пример. Пусть задано множество
X = {Николай, Петр, Николаев, Петров, Елена, Екатерина, Михаил, Татьяна} и отношения:
Николай - супруг Елены,
Екатерина - супруга Петра,
Татьяна - дочь Николая и Елены,
Михаил - сын Петра и Екатерины,
семьи Михаила и Петра дружат друг с другом.
Тогда множество X и множество перечисленных отношений Y могут служить теоретико-множественной моделью двух дружественных семей.
Модель называется логической, если она представима предикатами, логическими функциями.
Например, совокупность логических функций вида:
z = x y x, p = x y
есть математическая логическая модель работы дискретного устройства.
Игровые модели
Модель игровая, если она описывает, реализует некоторую игровую ситуацию между участниками игры.
Пример. Пусть игрок 1 - добросовестный налоговый инспектор, а игрок 2 - недобросовестный налогоплательщик. Идет процесс (игра) по уклонению от налогов (с одной стороны) и по выявлению сокрытия уплаты налогов (с другой стороны). Игроки выбирают натуральные числа i и j (i, j n), которые можно отождествить, соответственно, со штрафом игрока 2 за неуплату налогов при обнаружении игроком 1 факта неуплаты и с временной выгодой игрока 2 от сокрытия налогов. Если в качестве модели взять матричную игру с матрицей выигрышей порядка n, то в ней каждый элемент определяется по правилу aij = |i - j|. Модель игры описывается этой матрицей и стратегией уклонения и поимки. Эта игра - антагонистическая.
Лингвистические модели
Модель называется языковой, лингвистической, если она представлена некоторым лингвистическим объектом, формализованной языковой системой или структурой.
Иногда такие модели называют вербальными, синтаксическими.
Например, правила дорожного движения - языковая, структурная модель движения транспорта и пешеходов на дорогах.
Пусть B - множество производящих основ существительных, C - множество суффиксов, P - прилагательных, bi – корень слова; "+" - операция конкатенации слов, ":=" - операция присваивания, "=>" - операция вывода (выводимости новых слов), Z - множество значений (смысловых) прилагательных.
Языковая модель M словообразования может быть представлена:
<pi> = <bi> + <сi>.
При bi - "рыб(а)", сi - "н(ый)", получаем по этой модели pi - "рыбный", zi - "приготовленный из рыбы".
Система клеточных автоматов
Модель клеточно-автоматная, если она представима клеточным автоматом или системой клеточных автоматов.
Клеточный автомат - дискретная динамическая система, аналог физического (непрерывного) поля. Клеточно-автоматная геометрия - аналог евклидовой геометрии. Неделимый элемент евклидовой геометрии - точка, на основе ее строятся отрезки, прямые, плоскости и т.д.
Неделимый элемент клеточно-автоматного поля - клетка, на основе её строятся кластеры клеток и различные конфигурации клеточных структур. Представляется клеточный автомат равномерной сетью клеток ("ячеек") этого поля. Эволюция клеточного автомата разворачивается в дискретном пространстве - клеточном поле.
Смена состояний в клеточно-автоматном поле происходит одновременно и параллельно, а время идет дискретно. Несмотря на кажущуюся простоту их построения, клеточные автоматы могут демонстрировать разнообразное и сложное поведение объектов, систем.
В последнее время они широко используются при моделировании не только физических, но и социально-экономических процессов.
Фрактальные модели
Модель называется фрактальной, если она описывает эволюцию моделируемой системы эволюцией фрактальных объектов.
Если физический объект однородный (сплошной), т.е. в нем нет полостей, то можно считать, что его плотность не зависит от размера. Например, при увеличении параметра объекта R до 2R масса объекта увеличится в R2 раз, если объект- круг и в R3 раз, если объект - шар, т.е. существует связь массы и длины. Пусть n - размерность пространства. Объект, у которого масса и размер связаны называется "компактным". Его плотность можно рассчитать по формуле:

Если объект (система) удовлетворяет соотношению M(R) ~ Rf(n), где f(n) < n, то такой объект называется фрактальным.
Его плотность не будет одинаковой для всех значений R, то она масштабируется согласно формуле:

Так как f(n) - n < 0 по определению, то плотность фрактального объекта уменьшается с увеличением размера R, а ρ(R) является количественной мерой разряженности объекта.
Пример фрактальной модели - множество Кантора. Рассмотрим отрезок [0;1]. Разделим его на 3 части и выбросим средний отрезок. Оставшиеся 2 промежутка опять разделим на три части и выкинем средние промежутки и т.д. Получим множество, называемое множеством Кантора. В пределе получаем несчетное множество изолированных точек (рис. 1.4)

Рис. 1.4. Множество Кантора для 3-х делений
Генетические алгоритмы
Идея генетических алгоритмов "подсмотрена" у систем живой природы, у которых эволюция развертывается достаточно быстро.
Генетический алгоритм - это алгоритм, основанный на имитации генетических процедур развития популяции в соответствии с принципами эволюционной динамики.
Генетические алгоритмы используются для решения задач оптимизации (многокритериальной), для задач поиска и управления.
Данные алгоритмы адаптивны, они развивают решения и развиваются сами.
. Генетический алгоритм может быть построен на основе следующей укрупненной процедуры:.
Хотя генетические алгоритмы и могут быть использованы для решения задач, которые, нельзя решить другими методами, они не гарантируют нахождение оптимального решения, по крайней мере, за приемлемое время. Здесь более уместны критерии типа "достаточно хорошо и достаточно быстро".
Главное же преимущество их использования заключается в том, что они позволяют решать сложные задачи, для которых не разработаны пока устойчивые и приемлемые методы, особенно на этапе формализации и структурирования системы.
Генетические алгоритмы эффективны в комбинации с другими классическими алгоритмами и эвристическими процедурами.
Статические и динамические, дискретные и непрерывные модели
Классификацию моделей проводят по различным критериям.
Модель называется статической, если среди параметров, участвующих в ее описании, нет временного параметра. Статическая модель в каждый момент времени дает лишь "фотографию" системы, ее срез.
Пример. Закон Ньютона F=a*m - это статическая модель движущейся с ускорением a материальной точки массой m. Эта модель не учитывает изменение ускорения от одной точки к другой.
Модель динамическая, если среди ее параметров есть временной параметр, т.е. она отображает систему (процессы в системе) во времени.
Пример. Динамическая модель закона Ньютона будет иметь вид:
F(t)=a(t)*m(t).
Модель дискретная, если она описывает поведение системы только в дискретные моменты времени.
Пример. Если рассматривать только t=0, 1, 2, …, 10 (сек), то модель
St=gt2/2
или числовая последовательность: S0=0, S1=g/2, S2=2g, S3=9g/2,:, S10=50g может служить дискретной моделью движения свободно падающего тела.
Модель непрерывная, если она описывает поведение системы для всех моментов времени некоторого промежутка времени.
Пример. Модель S=gt2/2, 0 < t < 100 непрерывна на промежутке времени (0;100).
Модель имитационная, если она предназначена для испытания или изучения возможных путей развития и поведения объекта путем варьирования некоторых или всех параметров модели.
Пример. Пусть модель экономической системы производства товаров двух видов 1 и 2, в количестве x1 и x2 единиц и стоимостью каждой единицы товара a1 и a2 на предприятии описана в виде соотношения:
a1x1 + a2x2 = S,
где S - общая стоимость произведенной предприятием всей продукции (вида 1 и 2). Можно ее использовать в качестве имитационной модели, по которой можно определять (варьировать) общую стоимость S в зависимости от тех или иных значений объемов и стоимости производимых товаров.
|