Назначение геометрии инструмента и оптимальных режимов резания при точении, сверлении, фрезеровании. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Назначение геометрии инструмента и оптимальных режимов резания при точении, сверлении, фрезеровании.



Выбор заднего угла a. Известно, что при обработке сталей больший оптимальный угол a соответствует меньшей толщине срезаемого слоя: sin aопт=0,13/а0,3.

Для практических целей при обработке сталей рекомендуются следующие значения задних углов: для черновых резцов при S>0,3мм/об - a=8°; для чистовых резцов при S<0,3 мм/об - a=12°; для торцовых и цилиндрических фрез - a=12…15°.

Значение задних углов при обработке чугунов несколько меньше, чем для обработки сталей.

Выбор переднего угла g. Передний угол должен быть тем больше, чем меньше твердость и прочность обрабатываемого материала и чем больше его пластичность. Для инструментов из быстрорежущей стали при обработке мягких сталей угол g=20…30°, сталей средней твердости - g=12…15°, чугуна - g=5…15° и алюминия - g=30…40°. У твердосплавного инструмента передний угол делается меньшим, а иногда даже отрицательным в силу того, что этот инструментальный материал менее прочный, чем быстрорежущая сталь. Однако уменьшение g приводит к росту сил резания. Для снижения сил резания в таком случае на передней поверхности как твердосплавного, так и быстрорежущего инструмента затачивают отрицательную фаску.

Выбор главного угла в плане j. При обработке нежестких деталей для уменьшения радиальной составляющей Ру главный угол в плане следует увеличивать до j=90°. В отдельных случаях угол j назначают из конструктивных соображений. Главный угол в плане влияет также на шероховатость обработанной поверхности, поэтому при чистовой обработке рекомендуется использовать меньшие значения j.

Выбор вспомогательного угла в плане j1. Для отдельных видов инструментов j1 колеблется в пределах от 0 до 2…3°. Например, у сверл и метчиков j1=2…3¢, а у отрезного резца j1=1…3°.

Выбор угла наклона главной режущей кромки l. Рекомендуемые углы для чистовых и черновых резцов из быстрорежущей стали соответственно l=0…(-4)° и l=5…+10°, для твердосплавных резцов при работе их без ударов и с ударами соответственно l=5…+10° и l=5…+20°.

 

Назначение оптимальных режимов резания:

1. Прежде всего, выбирают инструментальный материал, конструкцию инструмента и геометрические параметры его режущей части. Материал режущей части выбирают в зависимости от свойств обрабатываемого материала, состояния поверхности заготовки, а также от условий осуществляемого резания. Геометрические параметры инструмента назначаются в зависимости от свойств обрабатываемого материала, жесткости технологической системы, вида обработки (черновой, чистовой или отделочной) и других условий резания.

2. Назначают глубину резания с учетом припуска на обработку. При черновой обработке желательно назначать глубину резания, обеспечивающую срезание припуска за один проход. Количество проходов свыше одного при черновой обработке следует допускать в исключительных случаях при снятии повышенных припусков. Получистовая обработка часто производится в два прохода. Первый, черновой, осуществляется с глубиной резания t=(0,6…0,75)h, а второй, окончательный с t=(0,3…0,25)h. Обработка в два прохода в этом случае вызвана тем, что при снятии слоя толщиной свыше 2мм за один проход качество обработанной поверхности низкое, а точность ее размеров недостаточна. При чистовой обработке в зависимости от точности и шероховатости обработанной поверхности глубину резания назначают в пределах 0,5…2,0мм на диаметр, а при обработке с шероховатостью менее Ra 1,25 – в пределах 0,1…0,4мм.

3. Выбирают подачу (при точении и сверлении – S0, мм/об; при фрезеровании Sz, мм/зуб).При черновой обработке она устанавливается с учетом жесткости технологической станочной системы, прочности детали, способа ее крепления (в патроне, в центрах и т.д.), прочности и жесткости рабочей части режущего инструмента, прочности механизма подачи станка, а также установленной глубины резания. При чистовой обработке назначение подачи необходимо согласовывать с заданной шероховатостью обработанной поверхности и квалитетом точности, учитывая при этом возможный прогиб детали под действием сил резания и погрешности геометрической формы обработанной поверхности. После выбора нормативной подачи производят проверочные расчеты по формулам: Рх= , или .

4. Определяют скорость резания. Скорость резания, допускаемая режущим инструментом при определенном периоде его стойкости, зависит от глубины резания и подачи, материала режущей части инструмента и его геометрических параметров, от обрабатываемого материала, вида обработки, охлаждения и других и других факторов.

При данных глубине резания, подаче и периоде стойкости можно рассчитать скорость резания: при точении: ; при сверлении: ; при фрезеровании: .

5. При черновой обработке проверяется выбранный режим резания по мощности станка. В этом случае должно соблюдаться соотношение: Nрез£1,3hNст. Если окажется, что мощности электродвигателя станка, на котором производится обработка, не хватает, надо выбрать более мощный станок. Если это невозможно, необходимо уменьшить выбранные значения u или S.

6. Определяют основное время каждого прохода (формулы для его расчета при различных видах обработки приводятся в нормативно-справочной литературе.

ПРОЦЕСС ШЛИФОВАНИЯ

Шлифование – процесс резания металлов, осуществляемый зернами абразивного материала. Шлифованием можно практически обрабатывать любые материалы, так как твердость зерен абразива (2200…3100НВ) и алмаза (7000НВ) очень велика. Для сравнения отметим, что твердость твердого сплава 1300НВ, цементита 2000НВ, закаленной стали 600…700НВ. Зерна абразива скрепляются связкой в инструменты различной формы или наносятся на ткань (абразивные шкурки). Шлифование применяется чаще всего как отделочная операция и позволяет получать детали 7…9-го и даже 6-го квалитетов с шероховатостью Ra=0,63…0,16мкм и менее. В некоторых случаях шлифование применяется при обдирке отливок и поковок, при зачистке сварных швов, т.е. как подготовительная или черновая операция. В настоящее время применяется глубинное шлифование для съема больших припусков.

Характерными особенностями процесса шлифования являются следующие:

1) многопроходность, способствующая эффективному исправлению погрешностей формы и размеров деталей, полученных после предшествующей обработки;

2) резание осуществляется большим количеством беспорядочно расположенных абразивных зерен, обладающих высокой микротвердостью (22000…31000Мпа). Эти зерна, образующие прерывистый режущий контур, прорезают мельчайшие углубления, а объем металла, срезаемый в единицу времени, в этом случае значительно меньше, чем при резании металлическим инструментом. Одним абразивным зерном в единицу времени срезается примерно в 400000 раз меньший объем металла, чем одним зубом фрезы;

3) процесс срезания стружки отдельным абразивным зерном осуществляется на высоких скоростях резания (30…70м/с) и за очень короткий промежуток времени (в течение тысячных и стотысячных долей секунды);

4)
 
 

абразивные зерна расположены в теле круга хаотически. Они являются многогранниками неправильной формы и имеют округленные радиусом r вершины (Стр. 301).

Округление это невелико (обычно r=8…20 мкм), но его всегда надо учитывать, так как при микрорезании толщины слоев, снимаемых отдельными зернами, соизмеримы с r;

5) большие скорости резания и неблагоприятная геометрия режущих зерен способствует развитию в зоне резания высоких температур (1000…1500°С);

6) управлять процессом шлифования можно только за счет изменения режимов резания, так как изменение геометрии абразивного зерна, выполняющего роль резца или зуба фрезы, практически трудноосуществимо. Алмазные круги с помощью специальной технологии изготовления могут иметь преимущественную (требуемую) ориентировку алмазных зерен в теле круга, что обеспечивает более благоприятные условия резания;

7) абразивный инструмент может в процессе работы самозатачиваться. Это происходит, когда режущие грани зерен затупляются, что вызывает увеличение сил резания, а следовательно, и сил, действующих на зерно. В результате затупленные зерна выпадают, вырываются из связки или раскалываются, и в работу вступают новые острые зерна;

8) шлифованная поверхность образуется в результате одновременного действия как геометрических факторов, характерных для процесса резания, так и пластических деформаций, сопровождающих этот процесс.

Что касается геометрической схемы образования шлифованной поверхности, необходимо иметь в виду следующее:

1)
 
 

для большего соответствия действительному процессу стружкообразования следует рассматривать врезание зерен в шероховатую поверхность, а сами зерна считать хаотично расположенными во всем объеме круга (Стр. 302).

Шлифование должно рассматриваться как явление пространственное, а не плоскостное. В зоне резания обрабатываемая элементарная поверхность за время ее контакта со шлифовальным кругом соприкасается не с одним рядом зерен, а с несколькими;

2) чем меньше неровности абразивного режущего инструмента, тем ближе он подходит к сплошному режущему лезвию и тем менее шероховатой получается обработанная поверхность. Одинаковый режущий контур можно создать уменьшением номера зернистости или увеличением времени абразивного воздействия, например, за счет понижения скорости вращения детали или уменьшения продольной подачи за один оборот изделия;

3) упорядоченный режущий рельеф достигается алмазной правкой. В процессе шлифования по мере разрушения и выпадания отдельных зерен упорядоченный режущий рельеф нарушается;

4) абразивные зерна в процессе резания можно разделить на режущие (например, зерна 3, 7), скоблящие, если они врезаются на столь малую глубину, что происходит лишь пластическое выдавливание металла без снятия стружки, давящие 5 и нережущие 4. В реальном процессе шлифования примерно 85…90% всех зерен не режет, а так или иначе пластически деформирует тончайший поверхностный слой, т.е. наклепывает его.

5) на шероховатость влияет не только зернистость, но и связка абразивного инструмента, оказывающая полирующий эффект, который больше проявляется при меньших скоростях вращения круга.



Поделиться:


Последнее изменение этой страницы: 2016-04-19; просмотров: 838; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.117.137.64 (0.011 с.)