Тема 1. 3. Сплавы на основе железа 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Тема 1. 3. Сплавы на основе железа



Диаграмма состояния железо – углерод (см. схему 2) дает представление о строении железоуглеродистых сплавов – сталей и чугунов.

Схема 2 Диаграмма фазового состояния Fe – Fe3C

Содержание углерода в диаграмме Fe – C (цементит) ограничивается 6,67%, т.к. при этой концентрации образуется химическое соединение – карбид железа (Fe3C) или цементит, который и является вторым компонентом данной диаграммы.

Точка А (15390С) отвечает температуре плавления железа, точка D (15000C) – температуре плавления цементита, точки N (13920C) и G (9100С) соответствуют полиморфному превращению Feα – Feγ.

В системе (Fe – C) имеются две большие группы сплавов: стали и чугуны. Сталями называются сплавы железа с углеродом, содержащие до 2,14% С; сплавы с большим содержанием углерода от 2,14% до 6,67% называются чугунами. [4]

Углеродистые стали классифицируются:

По содержанию углерода на низкоуглеродистые (до 0,3% С), среднеуглеродистые (0,3 – 0,7% С) и высокоуглеродистые (более 0,7% С).

По назначению на конструкционные и инструментальные.

По качеству наобыкновенного качества, качественные, высоко-качественные.

По степени раскисления на кипящие (Si менее 0,07%), спокойные стали раскисляют марганцем, кремнием и алюминием (более 0,12%) и полуспокойные, которые занимают промежуточное положение между спокойными и кипящими.

Ракисление – это процесс удаления из жидкого металла кислорода, проводимый с целью предотвращения хрупкого разрушения стали при горячей деформации.

По структуре в равновесном состоянии стали делятся на доэвтек-тоидные, эвтектоидные и заэвтектоидные.

Влияние постоянных примесей на углеродистые стали.

В зависимости от способа выплавки стали различаются содержанием примесей. Основные из них следующие:

1) марганец в виде оксида MnO2 – пиролюзит;

2) кремний в виде соединения SiO2 – кремнезем;

3) вредные примеси – фосфор и сера. Эти элементы оказывают существенное влияние на механические, технологические и др. свойства стали, поэтому их количество строго регламентируется в различных марках сталей;

4) при выплавке и разливке стали в нее из окружающей атмосферы попадают кислород, азот, водород и др. газы

Включения оксидов MnO, SiO2 и Al2O3, а также некоторые других элементов могут образовывать в стали как продукты реакций раскисления на определенном этапе, а также попасть в нее из футеровки печей. Все неметаллические примеси существенно ухудшают металлургическое качество стали и снижают ее механические свойства.

Чугуны.

Чугуны – более дешевый материал, чем сталь. Содержание углерода в них больше 2,14%. Они обладают пониженной температурой плавления и хорошими литейными свойствами. За счет этого из чугунов можно делать отливки более сложной формы, чем из сталей.

В зависимости от того, в какой форме присутствует углерод в сплавах, различают белые, серые, высокопрочные и ковкие чугуны. Высокопрочные чугуны являются разновидностью серых, но из-за повышенных механических свойств их выделяют в особую группу.

Белый чугун имеет матово-белый цвет. Весь углерод в этом чугуне находится в связанном состоянии в виде цементита. Имеет большую твердость, очень хрупкий, для изготовления машин не используется. Отливки из белого чугуна служат для получения деталей из ковкого чугуна с помощью графитизирующего отжига. Высокая твердость поверхности такой отливки позволяет ей хорошо работать против истирания. Эти свойства отбеленного чугуна применяются для изготовления деталей, работающих в условиях износа.

Серый чугун по виду излома имеет серый цвет. В структуре серого чугуна имеется графит. По структуре металлической основы серые чугуны разделяют на три вида.

Марка серого чугуна состоит из букв СЧ (серый чугун) и цифры или группы цифр показывающих предел прочности (временное сопротивление) при растяжении и изгибе (кгс/мм2). Показателями механических свойств серых чугунов является прочность при статическом растяжении.

Серые чугуны имеют разнообразное применение от слабонагруженных деталей до изготовления отливок для станин мощных станков.

В высокопрочных чугунах графит имеет шаровидную форму. Их получают путем модифицирования магнием. Чугуны с шаровидным графитом имеют более высокую прочность и при этом некоторую пластичность.

Маркируются высокопрочные чугуны по пределу прочности (Ϭпр) и относительному удлинению (δ), например ВЧ45–5, где 45 кгс/мм2 – предел прочности, 5% – относительное удлинение.

Из высокопрочных чугунов изготавливают оборудование прокатных станов, кузнечнопрессовое оборудование, коленчатые валы и др. детали, работающие при циклических нагрузках и в условиях сильного износа.

Ковкими называют чугуны, в которых графит имеет хлопьевидную форму. Их получают в результате специального графитизирующего отжига (томление) белого чугуна. Ковкий чугун по сравнению с серым обладает более высокой прочностью.

Маркировка ковких чугунов КЧ и цифрами (как высокопрочных чугунов)

Ковкие чугуны широко применяются в сельскохозяйственном, авто-мобильном и текстильном машиностроении, в судо- и котло-, вагоно- и дизелестроении. Этот чугун идет на изготовление деталей высокой прочности, которые подвержены сильному истиранию и ударным знакопеременным нагрузкам.

Недостаток ковкого чугуна – высокая стоимость из-за продолжительного дорогостоящего отжига. [3]

ЗАДАНИЯ КОНТРОЛЬНОЙ РАБОТЫ

Задание №1.

Выполнить практическую работу «Построение кривых охлаждения сплавов Железо-Цементит»

Цель работы: ознакомление с принципами построения диаграмм состояния сплавов; изучение диаграммы состояния железо-цементит и превращений в железоуглеродистых сплавах в равновесных условиях.
Оборудование, приспособления, инструмент, материалы: диаграмма железо-цементит
Теоретические сведения
Имеется много методов построения диаграммы состояния (дилатометрический, электрический, магнитотермический, термический и др.). Сущность любого из них сводится к нахождению критических точек при нагреве или охлаждении металлов и сплавов. Критическими точками называются температуры, при которых начинаются и/или заканчиваются какие-либо превращения в сплавах. Определив экспериментально критические точки серии сплавов, строят полную диаграмму состояния в координатах "температура – концентрация". Диаграмма состояния железо-цементит (рисунок) охватывает сплавы, содержащие углерод в количестве от 0 до 6,67 %. При содержании 6,67 % углерода он образует химическое соединение с железом Fe3C – карбид железа, называемый также цементитом. Один из компонентов сплавов – железо – имеет несколько аллотропических модификаций:
- до 911°С железо имеет объемно-центрированную кубическую кристаллическую решетку(ОЦК) с периодом 0,286 нм;
- в интервале температур 911…1392 °С – гранецентрированную кубическую (ГЦК) кристаллическую решетку, а выше 1392 °С – снова объемноцентрированную кубическую кристаллическую решетку, но с другим периодом – 0,293 нм.
В зависимости от содержания углерода железоуглеродистые сплавы подразделяются на техническое железо (≤0,02 % С), углеродистые стали (от 0,02 до 2,14 % С) и чугуны (от 2,14 до 6,67 % С). Стали подразделяются на доэвтектоидные (0,02-0,8 % С), эвтектоидные (0,8 % С), заэвтектоидные (0,8…2,14 % С). Чугуны по содержанию углерода классифицируются на доэвтектические (2,14…4,3 % С), эвтектические (4,30 % С), заэвтектические (4,30…6,67 % С).
Процессы, происходящие в сплавах при их фазовых превращениях, подчинены общему закону равновесия, который носит название правила фаз и выражает зависимость числа степеней свободы системы «с» от количества компонентов «к», фаз «ф» и внешних переменных факторов «n» в условиях равновесия:

с = к + n – ф.

При рассмотрении равновесия в металлических сплавах, находящихся под воздействием атмосферного давления, единственным внешним переменным фактором является температура и поэтому n = 1. Система железо-цементит является двухкомпонентной, то есть к = 2. Отсюда следует, что

с = 2 + 1 – ф = 3 – ф.

Для построения кривой охлаждения (или нагрева) сплава, прежде всего, необходимо найти на концентрационной оси диаграммы состояния координату, соответствующую содержанию углерода в сплаве. Затем из найденной точки следует восстановить перпендикуляр до области существования жидкой фазы. Кривая охлаждения (или нагрева) строится справа от диаграммы состояния в координатах температура (ось абсцисс) - время (ось ординат). Масштаб оси времени произвольный, а масштаб оси температуры такой же, как и на диаграмме состояния.
Во время охлаждения сплава в нем происходят фазовые превращения. Каждое превращение протекает за определенный промежуток времени, поэтому соответствующие им участки кривой охлаждения имеют различные углы наклона по отношению к горизонтальной оси. Чем быстрее происходит превращение, тем круче кривая. Перитектическое, эвтектическое и эвтектоидное превращения идут во времени при постоянной температуре (так как с = 0), следовательно, им на кривой охлаждения будут соответствовать горизонтальные участки.

Построение кривой охлаждения рассмотрим на примере чугуна, содержащего 5 % углерода (см. рисунок). Восстанавливаем перпендикуляр из отметки 5 % углерода на оси абсцисс до точки 1, находящейся в области жидкого состояния сплавов. жидкий раствор углерода в железе), следовательно с = 3 – 1 = 2.-Переносим пунктиром температуру точки 1 на ось температур нашего графика. В точке 1 рассматриваемый сплав находится в жидком состоянии (то есть существует только одна фаза жидкий раствор углерода в железе), следовательно с = 3 – 1 = 2. При двух степенях свободы равновесие в системе не нарушается даже при одновременном изменении температуры и концентрации сплава в определенных пределах. При понижении температуры в сплаве не будет происходить никаких превращений, и температура будет падать быстро, кривая охлаждения идет круто вниз до точки 2. Точкой 2 обозначено пересечение нашей вертикали с линией CD диаграммы состояния, соответствующей началу кристаллизации цементита. цементит, число степеней свободы уменьшается (с = 3 – 2 = 1), кривая охлаждения станет более пологой до температуры, соответствующей следующей критической точке 3.-Следовательно, в сплаве появляется вторая фаза цементит, число степеней свободы уменьшается (с = 3 – 2 = 1), кривая охлаждения станет более пологой до температуры, соответствующей следующей критической точке 3. На участке кривой 1-2 указываем фазовое состояние сплава “ж” и число степеней свободы, равное 2, соответственно на участке 2-3 фазовое состояние “ж + ц”, а число степеней свободы с = 1. При изменении температуры в пределах точек 2 и 3 изменяется соотношение между жидкой и твердой фазами, но равновесие не нарушается.- жидкий раствор углерода в железе), следовательно с = 3 – 1 = 2. При двух степенях свободы равновесие в системе не нарушается даже при одновременном изменении температуры и концентрации сплава в определенных пределах. При понижении температуры в сплаве не будет происходить никаких превращений, и температура будет падать быстро, кривая охлаждения идет круто вниз до точки 2. Точкой 2 обозначено пересечение нашей вертикали с линией CD диаграммы состояния, соответствующей началу кристаллизации цементита. Следовательно, в сплаве появляется вторая фаза -Построение кривой охлаждения рассмотрим на примере чугуна, содержащего 5 % углерода (см. рисунок). Восстанавливаем перпендикуляр из отметки 5 % углерода на оси абсцисс до точки 1, находящейся в области жидкого состояния сплавов. Переносим пунктиром температуру точки 1 на ось температур нашего графика. В точке 1 рассматриваемый сплав находится в жидком состоянии (то есть существует только одна фаза
Точка 3 (пересечение вертикали с линией ECF) соответствует эвтектическому превращению, то есть совместной кристаллизации цементита и аустенита с образованием ледебурита. При этом одновременно существуют три фазы: жидкость, цементит и аустенит, следовательно число степеней свободы с = 3 – 3 = 0, и система нонвариантна, три фазы могут находиться в равновесии только при строго постоянной температуре. На кривой охлаждения это отражено отрезком 3-3*. Между точками 3 и 4 сплав имеет двухфазное состояние (аустенит и цементит) и с = 3 – 2 =1. При температуре, соответствующей точке 4, в сплаве происходит эвтектоидное превращение, аналогичное эвтектическому. Отличие только в том, что в нем участвуют только твердые фазы: аустенит, цементит и феррит. На кривой охлаждения делаем соответствующие записи.

Содержание отчета
Диаграмма состояния железо-цементит с обозначением критических точек и областей диаграммы. Кривая охлаждения (или нагрева) сплава с заданной концентрацией углерода. Определение феррита, аустенита, перлита, ледебурита.
Выводы.
Контрольные вопросы
1. Что такое фаза?
2. Что называется структурной составляющей?
3. Что такое феррит, аустенит, цементит, перлит, ледебурит?
4. Что такое критическая точка?
5. Как обозначаются критические точки?
6. Что такое эвтектическое превращение?
7. Чем эвтектоидное превращение отличается от эвтектического?
8. Как расшифровывается правило фаз?
9. Как строятся кривые охлаждения?

 

ВАРИАНТЫ ЗАДАНИЙ

№ варианта 1 2 3 4 5 6 7 8 9 10 11 12
Содержание углерода в стали, % 0,6 0,7 0,8 0,9 1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7

Задание №2.

 

Изучить сущность определения твердости различными методами.

Твердость – это сопротивление материала проникновению в его поверхность стандартного тела (индентора), не деформирующегося при испытании.

Широкое распространение объясняется тем, что не требуются специальные образцы.

Это неразрушающий метод контроля. Основной метод оценки качества термической обработке изделия. О твердости судят либо по глубине проникновения индентора (метод Роквелла), либо по величине отпечатка от вдавливания (методы Бринелля, Виккерса).

Во всех случаях происходит пластическая деформация материала. Чем больше сопротивление материала пластической деформации, тем выше твердость.

Наибольшее распространение получили методы Бринелля, Роквелла и Виккерса. Схемы испытаний представлены на рисунке 1.

Твердость по Бринеллю

Испытание проводят на твердомере Бринелля (рисунок 1 а).

В качестве индентора используется стальной закаленный шарик диаметром D 2,5; 5; 10 мм, в зависимости от толщины изделия.

Нагрузка Р, в зависимости от диаметра шарика и измеряемой твердости: для термически обработанной стали и чугуна – P=30D2, литой бронзы и латуни – P=10D2, алюминия и других очень мягких металлов – P=2,5D2.

Продолжительность выдержки: для стали и чугуна – 10 с, для латуни и бронзы – 30 с.

Полученный отпечаток измеряется в двух направлениях при помощи лупы Бринелля.

Твердость по Бринеллю обозначается НВ 250.

Испытание по Бринеллю

Прибор для испытания на твердость по Бринеллю

Наиболее распространенным прибором для испытания на твердость по Бринеллю является автоматический рычажный пресс.

Схема автоматического рычажного пресса показана на рисунке 1. В верхней части станины 1 имеется шпиндель 2, в который вставляется наконечник с шариком 3. Может быть установлен один из трех наконечников — с шариком диаметром 10,5 или 2,5 мм. Столик 4 служит для установки на нем испытываемого образца 5. Вращением по часовой стрелке рукоятки 6 приводят в движение винт 7, который, перемещаясь вверх, поднимает столик 4, и образец 5 прижимается к шарику 3. При вращении рукоятки 6 до тех пор, пока указатель 8 не станет против риски, пружина 9 сжимается до отказа и создается предварительная нагрузка в 100 кГ.

Электродвигатель 10, который включают нажатием кнопки, расположенной сбоку пресса, приводит во вращение эксцентрик 11. При вращении эксцентрика 11 шатун 12, перемещаясь вниз, опускает рычаг 13 и соединенную с ним подвеску 14 с грузами 15, создавая этим нагрузку на шарик, который вдавливается в образец. При дальнейшем вращении эксцентрика И шатун 12, перемещаясь вверх, поднимает рычаг 13 и подвеску 14 с грузами 15, снимая этим нагрузку с шарика. Когда рычаг и подвеска с грузами достигнут исходного положения, автоматически дается сигнал звонком и автоматически выключается электродвигатель. Вращением рукоятки 6 против часовой стрелки опускают столик 4. В зависимости от грузов, установленных на подвеске 14, создается различная нагрузка

Рисунок 1 - Схема автоматического рычажного пресса для определения твёрдости.

Метод Роквелла

Основан на вдавливании в поверхность наконечника под определенной нагрузкой (рисунок 1 б)

Индентор для мягких материалов (до НВ 230) – стальной шарик диаметром 1/16” (Ø1,6 мм), для более твердых материалов – конус алмазный.

Нагружение осуществляется в два этапа. Сначала прикладывается предварительная нагрузка P0 (10 ктс) для плотного соприкосновения наконечника с образцом. Затем прикладывается основная нагрузка Р1, в течение некоторого времени действует общая рабочая нагрузка Р. После снятия основной нагрузки определяют значение твердости по глубине остаточного вдавливания наконечника h под нагрузкой P0.

 

Испытание по Роквеллу

Прибор типа Роквелла ТК-2

Общий вид и схема прибора ТК-2 показаны на рис. 2 и 3. Шпиндель 1 прибора (см. рис. 2) служит для закрепления на его конце с помощью винта 2 оправки 3 с шариком или алмазным (или из твердого сплава) конусом. Постоянный груз 4 создает нагрузку 50 кГ если на постоянный груз 4 установлен груз 5 (40 кГ), то создается нагрузка 90 кГ, если на постоянный груз 4 установлен груз 5 и груз 6 (50 кГ), то создается нагрузка 140 кГ. Стол 7 служит для установки на нем испытываемого образца 8. При вращении по часовой стрелке маховика 9 приводится во вращение винт 10, который, перемещаясь вверх, поднимает стол 7. и образец 8 подводится к оправке 3 с шариком или алмазным конусом. При дальнейшем вращении маховика 9 сжимается пружина 11, шарик, или алмазный конус, начинает внедряться в испытываемый образец 8, а стрелки поворачиваются по шкале индикатора 12. При вращении маховика 9 до тех пор, пока образец не упрется в ограничительный чехол 13, малая стрелка индикатора дойдет до красной точки, а большая стрелка установится приблизительно в вертикальном положении (с погрешностью ±5 делений) (, создается предварительная нагрузка 10 кГ. Точную установку шкалы индикатора на нуль производят при помощи барабана 14 (см. рис. 3) тросиком 15, закрепленным на ранте индикатора. Циферблат индикатора имеет две шкалы — черную (С) и красную (В). Независимо от того, что вдавливается в испытываемый образец — алмазный конус или шарик, с большой стрелкой индикатора всегда совмещается нуль черной шкалы со значком «С». Большую стрелку с нулевым штрихом красной шкалы со значком «В» не совмещают ни в каком случае.

Приведение в действие основной нагрузки осуществляется с помощью привода 16 от электродвигателя, работающего непрерывно и отключаемого с помощью тумблера 17 только при длительных перерывах в работе прибора.

Нажатием клавиши 18 приводят в действие кулачковый блок 19 механизма привода 16, передача от которого к грузовому рычагу 20 осуществляется с помощью штока 21. При этом подвеска 22 с грузами 4—6 опускается, и этим обеспечивается действие основной нагрузки и создается общая нагрузка (предварительная + основная).

Под действием основной нагрузки шарик, или алмазный конус, все глубже проникает в испытываемый образец, при этом большая стрелка индикатора поворачивается против часовой стрелки. После окончания вдавливания основная нагрузка, действовавшая на образец, автоматически снимается и остается предварительная нагрузка. При этом большая стрелка индикатора перемещается по часовой стрелке и указывает на шкале индикатора число твердости по Роквеллу. При испытании алмазным конусом под нагрузкой 150 или 60 кГ отсчет производят по черной шкале, а при испытании шариком под нагрузкой 100 кГ — по красной шкале.

По окончании цикла испытания кулачковый блок автоматически отключается и фиксируется в исходном положении. Нормальная - продолжительность цикла испытания 4 сек при положении рукоятки 23 (см. рис. 3) указателя против буквы Н.

Рисунок 2 - Прибор ТК-2 Рисунок 3 - Схема прибора ТК-2

Метод Виккерса

Твердость определяется по величине отпечатка (рисунок 1 в).

В качестве индентора используется алмазная четырехгранная пирамида с углом при вершине 136°.

Нагрузка Р составляет 5…100 кгс. Диагональ отпечатка d измеряется при помощи микроскопа, установленного на приборе.

Преимущество данного способа в том, что можно измерять твердость любых материалов, тонкие изделия, поверхностные слои. Высокая точность и чувствительность метода.

Испытание по Виккерсу

Прибор типа Виккерса.

Основной частью прибора (рис. 4) является поворотная головка 1, в которой смонтирована оправка с алмазной пирамидой 2, закрытой чехлом 3; специальный измерительный микроскоп 4 для измерения длины диагонали отпечатка и рабочий шпиндель 5.

При повороте рукояткой 6 головки 1 в крайнее левое положение прибор приводится в рабочее состояние, при котором ось рабочего шпинделя 5 совмещается с осью промежуточного шпинделя 7. При повороте рукояткой 6 головки 1 в крайнее правое положение прибор приводится в положение, при котором оптическая ось микроскопа 4 совмещается с центром отпечатка. При установке прибора в рабочее положение пружина 8 соединяет промежуточный шпиндель 7 с призмой 9 грузового рычага 10. На подвеске VI грузового рычага 10 устанавливают сменные грузы 12.

Столик 13 служит для установки на нем испытываемого образца 14. При вращении по часовой стрелке маховика 15 приводится во вращение винт 16, который, перемещаясь вверх, поднимает столик 13, и образец 14 прижимается к чехлу 3. В правой части прибора имется грузовой привод с масляным амортизатором 17 при помощи которого приложение нагрузки, выдержка под нагрузкой и снятие нагрузки осуществляются механически за счет энергии опускающегося груза 18. В связи с этим до прижима образца 14 к чехлу 3 грузовой привод должен быть взведен, что осуществляется нажимом рукоятки 19. При этом подъемный шток 20 удерживается во взведенном положении рычагом 21, жестко связанным с рукояткой 19 взвода, а рычаг 22 запирает всю систему привода во взведенном положении.

Рисунок 4 - Кинематическая схема прибора типа Виккерса.

Привод включают нажимом на педаль 23 пускового механизма. При этом приводится в движение рычаг 22 и под действием груза 18 опускается втулка 24, опирающийся на нее подъемный шток 20 и поршень 25 масляного амортизатора 17. Одновременно опускается грузовой рычаг 10, который опирается на шток 20, при этом алмазная пирамида 2 вдавливается в поверхность образца 14. При опускании втулки 24, шарнирно связанной с рычагом 26, соединенным с тягой 27 происходит подъем рычага 28 навстречу штоку 20. Когда шток 20 опустится приблизительно на 16 мм, его нижний конец встречается с рычагом 28. При дальнейшем опускании втулки 24 продолжается подъем рычага 28, при этом поднимаетсяшток 20 и грузовой рычаг 10. К концу хода поршня 25 масляного амортизатора 17 шток 20 придет в начальное положение и снимет нагрузку.

Продолжительность выдержки образца под нагрузкой регистрируется сигнальной лампочкой 29. В момент приложения нагрузки сигнальная лампочка зажигается и гаснет, когда нагрузка снята. Продолжительность выдержки образца под нагрузкой может быть от 10 до 60 сек, что достигается изменением скорости опускания штока амортизатора регулятором 30.

 

Порядок выполнения работы:

  1. Запишите наименование задания
  2. Дайте определение твердости;
  3. Перечислите методы измерения твердости;
  4. Оформите работу в виде таблицы
Наименование метода Сущность метода Индентор Продолжительность выдержки Условное обозначение твердости Схема определения твердости Схема прибора для измерения твердости
             

 

 

Задание №3.

Расшифровать буквы и цифры в названии марок конструкционных материалов

Вариант 1 2 3 4 5 6
Марка БСт3к ШХ4 Ст3кп Ст10 10ХСНД Р6М5Ф3
Вариант 7 8 9 10 11 12
Марка 10880 21880 Ст30 Ст20 15ХСНД Ст45
Вариант 1 2 3 4 5 6
Марка АЛ9   БрОФ4-0 ЛС59-1 Бр06Ц6СЗ   ЛЖМц59-1-1   АК4М4.ВТ22
Вариант 7 8 9 10 11 12
Марка Л68 ЛЦ40МцЗА АК9 БрКМцЗ-1 ЛАНКМц75-2-2 АК4М4.ВТ22

 

Теоретическая основа работы

Алюминий и его сплавы

Алюминий - легкий металл, обладающий высокими тепло- и электропроводностью, стойкий к коррозии. В зависимости от степени частоты первичный алюминий согласно ГОСТ 11069-74 бывает особой (А999), высокой (А995, А95) и технической чистоты (А85, А7Е, АО и др.). Алюминий маркируют буквой А и цифрами, обозначающими доли процента свыше 99,0% Al; буква "Е" обозначает повышенное содержание железа и пониженное кремния.

А999 - алюминий особой чистоты, в котором содержится не менее 99,999% Al;

А5 - алюминий технической чистоты в котором 99,5% алюминия. Алюминиевые сплавы разделяют на деформируемые и литейные. Те и другие могут быть не упрочняемые и упрочняемые термической обработкой.

Деформируемые алюминиевые сплавы хорошо обрабатываются прокаткой, ковкой, штамповкой. Их марки приведены в ГОСТ4784-74. К деформируемым алюминиевым сплавам не упрочняемым термообработкой, относятся сплавы системы Al-Mn и AL-Mg:Aмц; АмцС; Амг1; АМг4,5; Амг6. Аббревиатура включает в себя начальные буквы, входящие в состав сплава компонентов и цифры, указывающие содержание легирующего элемента в процентах. К деформируемым алюминиевым сплавам, упрочняемым термической обработкой, относятся сплавы системы Al-Cu-Mg с добавками некоторых элементов (дуралюны, ковочные сплавы), а также высокопрочные и жаропрочные сплавы сложного хим.состава. Дуралюмины маркируются буквой "Д" и порядковым номером, например: Д1, Д12, Д18, АК4, АК8.

Чистый деформируемый алюминий обозначается буквами "АД" и условным обозначением степени его чистоты: АДоч (>=99,98% Al), АД000(>=99,80% Аl), АД0(99,5% Аl), АД1 (99,30% Al), АД(>=98,80% Аl).

Литейные алюминиевые сплавы (ГОСТ 2685-75) обладает хорошей жидко-текучестью, имеет сравнительно не большую усадку и предназначены в основном для фасонного литья. Эти сплавы маркируются буквами "АЛ" с последующим порядковым номером: АЛ2, АЛ9, АЛ13, АЛ22, АЛЗО.

Иногда маркируют по составу: АК7М2; АК21М2, 5Н2,5; АК4МЦ6. В этом случае "М" обозначает медь. "К" - кремний, "Ц" - цинк, "Н" - никель; цифра - среднее % содержание элемента.

Из алюминиевых антифрикционных сплавов (ГОСТ 14113-78) изготовляют подшипники и вкладыши как литьем так и обработкой давлением. Такие сплавы маркируют буквой "А" и начальными буквами входящих в них элементов: А09-2, А06-1, АН-2,5, АСМТ. В первые два сплава входят в указанное количество олова и меди (первая цифра-олово, вторая-медь в %), в третий 2,7-3,3% Ni и в четвертый медь сурьма и теллур

Медь и ее сплавы

Технически чистая медь обладает высокими пластичностью и коррозийной стойкостью, малым удельным электросопротивлением и высокой теплопроводностью. По чистоте медь подразделяют на марки (ГОСТ 859-78).

После обозначения марки указывают способ изготовления меди: к - катодная, б - бес кислородная, р - раскисленная. Медь огневого рафинирования не обозначается.

МООк - технически чистая катодная медь, содержащая не менее 99,99% меди и серебра.

МЗ - технически чистая медь огневого рафинирования, содержит не менее 99,5%меди и серебра.

Медные сплавы разделяют на бронзы и латуни. Бронзы- это сплавы меди с оловом (4 - 33% Sn хотя бывают без оловянные бронзы), свинцом (до 30% Pb), алюминием (5-11% AL), кремнием (4-5% Si), сурьмой и фосфором (ГОСТ 493-79, ГОСТ 613-79, ГОСТ 5017-74, ГОСТ 18175-78).

Латуни - сплавы меди с цинком (до 50% Zn) и небольшими добавками алюминия, кремния, свинца, никеля, марганца (ГОСТ 15527-70, ГОСТ 17711-80). Медные сплавы предназначены для изготовления деталей методами литья, называют литейными, а сплавы, предназначенные для изготовления деталей пластическим деформированием - сплавами, обрабатываемыми давлением.

Медные сплавы обозначают начальными буквами их названия (Бр или Л), после чего следуют первые буквы названий основных элементов, образующих сплав, и цифры, указывающие кол-во элемента в процентах. Приняты следующие обозначения компонентов сплавов:

А - алюминий

Су - сурьма

Мц - марганец

К - кремний

С - свинец

Н - никель

Б - бериллий

Т - титан

Мг - магний

Кд - кадмий

Ср - серебро

О - олово

Ж - железо

Ф - фосфор

Мш - мышьяк

Х - хром

Ц – цинк

Примеры:

БрА9Мц2Л - бронза, содержащая 9% алюминия, 2% Mn, остальное Cu ("Л"' указывает, что сплав литейный);

ЛЦ40Мц3Ж - латунь, содержащая 40% Zn, 3% Mn, ~l% Fe, остальное Cu;

Бр0Ф8,0-0,3 - бронза на ряду с медью содержащая 8% олова и 0,3% фосфора;

ЛАМш77-2-0,05 - латунь содержащая 77% Cu, 2% Al, 0,055 мышьяка, остальное Zn (в обозначении латуни, предназначенной для обработки давлением, первое число указывает на содержание меди).

В несложных по составу латунях указывают только содержание в сплаве меди:Л96 - латунь содержащая 96% Cu и ~4% Zn (томпак);

Лб3 - латунь содержащая 63% Cu и -37% Zn.

Марки меди и её применение

№ п/п Марка меди Содержание меди,% Назначение
1. М00 99,99 Для полупроводниковых приборов
2. М0 99,95 Для сплавов, анодов, проводов
3. М1 99,9 Для безоловянистых бронз, проводников
4. М2 99,7 Для сплавов, обрабатываемых давлением
5. М3 99,5 Для проката обычного качества
6. М4 99,0 Для литейных бронз и др.неответственных сплавов

Задание №4.

Расшифровать марки проводов и кабелей

Вариант Марка изделия
1 М, А, АС, ВВГ, ВБбШв, МНС, ААГ, ААБ, ААШв, КГРЭШ(Т), КГВШУ, ВППУ ПЭТ, ПЭТД,.
2 АЖ, ПА, ПВГ, ВАШв,МНРс,. АСГ, АСБ, АСШв, КГКШч(Тч), КГЭкШ, ПЭТВ, ПЭТВП,
3 СИП, САП, ПБбШв, НРГ, ПвВГ, АОСБ,АПпВГ, АПвВГ, КГпЭ(Т, НШ), КГэВ ПНЭТ, ПЭЭИД,
4 САСП, АВТ,ВРГ, НРБ, СГ, ПК, АВВ, АПвП, АВВГ, АВБбШв, ПВ, АПВ, ПЭЭИП, ПЭФ,
5 МК, МФ, СРГ, ВВГ-У ПвП, АПВГ, АППВГ, АВАШв, ПРН, ПРП, ПР, ПРГ, ПАЛ,ОКС, ПЭТВМ, ПЭТМ,
6 НлФ, БрФ,АВВГ, АВБбШв, ВВГ, АпбШв, АВРГ, АВРБ, АСРБ, ПКВТ, ВПВ, ВПП, ОКС, ОЛПГ ПЭФД,
7 МА, МГЭ, МГ, АПВГ, АВАШв КГ, КГН, КПГ, КПГс, КОГ, КГЭ, КВВГ, АКВВГ, КВБбШв, ОКЛ, ПЭТКД,
8 ПЩ, ПЩС, АПБбШв, АНРГ, ВБбШв, РПШ, РПШЭ, КШВГТ, КГЭШ, КВКбШв, КПОБВнг, ОКК, ПЭП
9 ПГЛ, ПГОЛ, АВРГ, АНРБ, ПВГ, КОГВЭШ, КРШС, КРШУ, КВЭЛ, КРВГ, АКРВГ, КППГнг ОКМ, ПРТО,
10 МПЩ, АМГ, АСРГ, ВРГ, АПВГ, ВБв, КГО, ККГР, ЭВТ, МКШ, МКЭШ ТПП, ТПпП, ОКЗ, ОЛПГ
11 АН, ПМ СБ, СГ, СБГ,, ЦСБ, ЦАСБ КГШЭ(п), КГЭ(Т, Н), КШВГ-Т, КОГВЭШ, ТПВ, ОК,
12 ПАБ,МФО, ЦААБ, ОСБ ВБбШв, ПВГ КГЭШ(Т, р, рТ, У, УТ), КГЭБШ, КЭБШ, ТГ, ТБ, КТПЗБбШп

 

Теоретический материал:

Единой буквенно-цифровой системы обозначения кабельных изделий не установлено. Существует гостированное техническое обозначение материалов, из которых состоят элементы изделий, а также их конструктивных особенностей.

Значение аббревиатур марок кабеля и провода отечественного производства:

Расшифровка сокращений, применяемых для обозначений силовых кабелей с ПВХ (виниловой) и резиновой изоляцией (по ГОСТ 16442-80, ТУ16.71-277-98, ТУ 16.К71-335-2004)


А - (первая буква) алюминиевая жила, при ее отсутствии - жила медная по умолчанию (АСБл; ААБл; АВВГ).
АС - Алюминиевая жила и свинцовая оболочка (АС; ААБл).
АА - Алюминиевая жила и алюминиевая оболочка (ААШв; ААБл).
Б - Броня из двух стальных лент с антикоррозийным защитным покровом (АВБбШв; ВБбШв).
Бн - То же, но с негорючим защитным покровом (не поддерживающим горение).
б – Без подушки (АВБбШв; ВБбШв).
В - (первая (при отсутствии А) буква) ПВХ изоляция (ВВГ; ВБбШв).
В - (вторая (при отсутствии А) буква) ПВХ оболочка (ВВГ; ВВГнгд).
Г - В начале обозначения - кабель предназначен для горных выработок, в конце обозначения - отсутствие защитного покрова поверх брони или оболочки («голый») (МГ).
г - Водоблокирующие ленты герметизации металлического экрана (в конце обозначения).
2г - Алюмополимерная лента поверх герметизированного экрана.
Шв - Защитный покров в виде выпрессованного шланга (оболочки) из поливинилхлорида (АВБбШв; ВБбШв).
Шп - Защитный покров в виде выпрессованного шланга (оболочки) из полиэтилена.
Шпс – Защитный покров из выпрессованного шланга из самозатухающего полиэтилена.
К – Броня из круглых оцинкованных стальных проволок, поверх которых наложен защитный покров. Если стоит в начале обозначения – контрольный кабель (КВВГ; КВБбШв).
С – Свинцовая оболочка.
О - Отдельные оболочки поверх каждой фазы.
Р – Резиновая изоляция.
НР - Резиновая изоляция и оболочка из резины, не поддерживающей горение.
П - Изоляция или оболочка из термопластичного полиэтилена.
Пс - Изоляция или оболочка из самозатухающего полиэтилена (не поддерживающего горение).
Пв - Изоляция из вулканизированного полиэтилена.
БбГ - Броня профилированной стальной ленты.
нг - Не поддерживающий горения (ВВГнг; СИП-5нг).
LS - Low Smoke - низкое дымо- и газовыделение (АВВГнг-LS-HF; ВВГнг-LS-HF).
КГ - Кабель гибкий (КГ).
Кабель с БПИ - бумажной пропитанной изоляцией (по ГОСТ 18410-73):


А - (первая буква) алюминиевая жила, при ее отсутствии - жила медная по умолчанию. Если в середине обозначения после символа материала жилы, то алюминиевая оболочка.
Б – Броня из плоских стальных лент (после символа материала оболочки).
АБ - Алюминиевая броня (ААБл).
СБ - (первая или вторая (после А) буква) свинцовая броня (АСБл).
С – Материал оболочки свинец.
О – Отдельно освинцованная жила.
П - Броня из плоских стальных оцинкованных проволок.
К - Броня из круглых стальных оцинкованных проволок.
В – Изоляция бумажная с обедненной пропиткой. Ставится в конце обозначения через тире.
б – Без подушки.
л - В составе подушки дополнительная 1 лавсановая лента.
2л - В составе подушки дополнительная двойная лавсановая лента.
Г - Отсутствие защитного покрова («голый»).
н – Негорючий наружный пок



Поделиться:


Последнее изменение этой страницы: 2022-01-22; просмотров: 58; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.138.67.203 (0.112 с.)