ДНК – зонды, клонирование, векторные системы. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

ДНК – зонды, клонирование, векторные системы.



 

ДНК – зондом может служить любая однонитевая ДНК, ограниченного размера, используемая для поиска комплиментарных последовательностей в молекуле большого размера или среди пула разнообразных молекул ДНК.

В ряде случаев в качестве зондов используют искусственным образом синтезированные олигонуклеотидные последовательности ДНК, размер которых не превышает 30 нуклеотидов. Зондами могут быть и выделенные последовательности ДНК из генома. Однако такие последовательности чаще всего клонируют, чтобы иметь возможность получать их в любое время и в неограниченном количестве.

Клонирование предполагает встраивание (инсерцию) чужеродной экзогенной ДНК в векторную молекулярную ДНК, обеспечивающую проникновение этой конструкции в бактериальные клетки Коулина.

Химерные молекулы ДНК, составленные из фрагментов разного происхождения, носят название рекомбинантных ДНК.

В качестве клонирующих векторов используют модифицированные плазмиды, фаги, космиды, ретро и аденовирусы и другие генетические конструкции.

Размеры клонируемых ДНК – зондов составляют сотни – тысячи нуклеотидов, что определяется способностью вектора удерживать чужеродный фрагмент ДНК. Особенно широко применяют в качестве векторов плазмидную ДНК.

 

Плазмиды.

Плазмиды – небольшие двуцепочечные молекулы ДНК, которые могут присутствовать в различном числе копий в бактериальной клетке.

Открытие плазмид связано с изучением генетической природы антибиотикоустойчивости. Оказалось, что именно плазмиды могут нести гены, сообщающие клетке устойчивость к антибиотикам и потеря чувствительности бактерий к их действию как раз и происходит за счет отбора тех штаммов, в которых имеются плазмиды с сообщающей генетическую информацию.

Плазмиды имеют автономную систему репликации, обеспечивающую поддержание их количества в клетке на определенном уровне (от 1 до нескольких сотен плазмидных генов на клетку).

Обычно для клонирования выбирают плазмиды с ослабленным контролем репликации, что позволяет им накапливаться в клетке в большом количестве. Конструирование плазмидных клонирующих векторов состоит во внесении изменения контроля репликации и добавление или вырезание генов антибиотикоустойчивости или удобных для клонирования иных генетических элементов:

· специфические сайты рестрикции

· инициация и регуляция транскрипции и т.д.

Чаще для клонирования используют плазмиды pBR332 или Col E1 или их поизводные.

Кольцевую молекулу плазмидной ДНК можно легко перевести в линейную форму путем единичного разрыва в месте локализации уникального сайта рестрикции.

Присоединение (встраивание, инсерция) фрагмента чужеродной ДНК к концам линейной молекулы осуществляется с помощью специфических ферментов (лигазы), после чего гибридные плазмиды вновь принимают кольцевую форму. Разработаны достаточно простые и эффективные методы трансформации бактерий, т.е. искусственное введение плазмид в бактериальную клетку, при этом присутствующие в плазмидах гены антибиотикоустойчивости используют в качестве маркеров трансформирующих бактерии для их дальнейшего отбора.

При размножении трансформирующих бактерий происходит ↑ числа копий инсертированного фрагмента ДНК. Т.о. этот чужеродный для бактерии генетический материал может быть получен практически в любых количествах.

Также выделенная из бактерий плазмидная ДНК ли изолированный фрагмент может быть использован в дальнейшем как ДНК – зонд.

Для некоторых целей в качестве клонирующих векторов оказалось удобнее использовать фаги (бактериальные вирусы). Фаговая ДНК существует только в линейной форме, поэтому при её рестрикции образуются только 2 фрагмента, которые сшивают с чужеродной ДНК с образованием химерного фага, технически эта операция проще инсерции.

В последнее время большое распространение получило клонирование в космидах( конструкция, объединяющая в себе преимущества плазмид и фагов ).

Космиды получены на основе плазмид, но в них введены генетические элементы фага, отвечающие за упаковку ДНК в фаговые частицы, такие векторы могут существовать не только в виде плазмид и бактериальной клетки, но и в виде фаговых частиц in vitro.

Космиды обладают большей клонирующей способностью по сравнению с плазмидными и фаговыми векторами и могут нести до 40 – 45 тыс.п.о. инсертированной ДНК.

Все вышеперечисленные векторы используют для клонирования прокариотических систем.

Векторы, пригодные для направленного переноса в эукариотическую клетку, конструируют на основе прокариотических или дрожжевых плазмид – единственные плазмиды, которые найдены в клетках эукариот, а также используют различные эукариотические вирусы (ретровирусы, аденоассоциированные вирусы).

При использовании плазмид в качестве клонирующих векторов в них вводят вирусные последовательности, ответственные за начало репликации. Введение векторов в эукариотические клетки часто осуществляют путем котрансформации, т.е. одновременно вводят плазмиды и сегмент чужеродной ДНК. Векторные последовательности, введенные в клетки эукариот могут сохраняться в течение нескольких дней в виде суперскрученных кольцевых молекул – эписом. Для клонирования субхромосомных фрагментов ДНК, содержащих целые гены, разработана система дрожжевых mini – хромосом (искусственные дрожжевые хромосомы УАС). Эти хромосомы конструируют на основе плазмидных векторов, содержащих в своем составе известные центромерные и теломерные последовательности хромосом дрожжей, необходимых для поддержания и репликации векторов в клетках хозяина, такие системы способны удерживать фрагменты чужеродной ДНК размером несколько сотен тыс. или даже миллионов п.о.

 



Поделиться:


Последнее изменение этой страницы: 2021-09-26; просмотров: 152; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.114.80 (0.005 с.)