Основные механизмы регуляции. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Основные механизмы регуляции.



 Аллостерическая модуляция. При аллостерической модуляции регуляторный фермент имеет в своей структуре один или несколько аллостерических центров, способных высоко избирательно взаимодействовать с низкомолекулярными соединениями аллостерическими модуляторами. В результате этого взаимодействия изменяется конформация белка-фермента, в том числе несколько изменяется и структура активного центра, что сопровождается изменением эффективности катализа. Если каталитическая активность фермента при этом возрастает, мы имеем дело с аллостерической активацией; если же активность фермента падает, то речь идет об аллостерическом ингибировании. Связывание аллостерического модулятора с аллостерическим центром фермента идет за счет слабых взаимодействий, поэтому оно легко обратимо: при снижении концентрации модулятора в среде окружения комплекс фермент-модулятор диссоциирует и фермент восстанавливает свою исходную конформацию, а следовательно, и каталитическую активность. В качестве аллостерических модуляторов в клетке выступают обычно промежуточные метаболиты или конечные продукты того или иного метаболического пути. Наиболее часто встречается вариант аллостерической регуляции, известный под названием ретроингибирования или ингибирования по принципу отрицательной обратной связи. В этом случае конечный продукт метаболического пути ингибирует по аллостерическому механизму активность регуляторного фермента, катализирующего одну из начальных реакций того же метаболического пути: Так регулируются в клетках, например, метаболические пути, отвечающие за синтез пуриновых или пиримидиновых нуклеотидов. В качестве второго варианта аллостерической регуляции можно привести механизм активации предшественников. В этом случае один из промежуточных метаболитов, образующихся в начале метаболического пути, выступает в качестве аллостерического активатора того или иного фермента, катализирующего одну из конечных реакции того же самого метаболического пути:…. Примером может служить активация пируваткиназы фруктозо-1,6-бисфосфатом в метаболическом пути окислительного распада глюкозы.

2. Ковалентная модификация - это механизм регуляции активности ферментов за счет присоединения с помощью ковалентной связи в регуляторном центре фермента атомной группировки или отщепления этой группировки. Присоединение к ферменту ковалентной связью дополнительной группировки приводит к изменению конформации белка-фермента, что сопровождается изменением структуры активного центра и изменением эффективности катализа. Отщепление этой группировки обеспечивает восстановление исходной конформации фермента, а следовательно, и возвращение к исходному уровню его каталитической активности. В качестве таких модифицирующих группировок могут выступать остатки адениловой кислоты, гликозильные остатки, но чаще всего встречается фосфорилирование присоединение остатков фосфорной кислоты. Примерами работы таких регуляторных механизмов могут служить: активация гликогенфосфорилазы путем ее фосфорилирования, активация глутаматдегидрогеназы путем ее аденилирования, снижение активности пируватдегидрогеназного комплекса в результате его фосфорилирования, снижение активности гликогенсинтетазы путем ее фосфорилирования.

3. Белок-белковое взаимодействие. По современным представлениям ферменты отдельных метаболических путей объединены в клетках в большинстве своем в мультиэнзимные комплексы метаболоны. В составе таких метаболонов каждый фермент находится в контакте с одним или несколькими ферментами этого метаболического пути. Поэтому конформация, а следовательно и каталитическая активность каждого отдельного фермента будет зависеть от состояния других контактирующих с ним ферментов. Отсюда, изменение каталитической активности регуляторного фермента, входящего в состав метаболона, вызванное, например, присоединением к нему аллостерического модулятора, будет сопровождаться изменением активности и других ферментов метаболона, поскольку их конформация в составе надмолекулярного белкового комплекса будет также претерпевать определенные изменения. В клетках и во внеклеточной жидкости присутствуют белки, которые могут взаимодействовать с белками-ферментами, регулируя их активность. Эти белки получили название белков-модуляторов. Так, в состав липопротеидов плазмы крови входят апобелки апо-С-II и апо-С-I, которые взаимодействуя с ферментами липопротеидлипазой и лецитинхолестеролацилтрансферазой соответственно, увеличивают их активность. В плазме крови присутствует также белок-модулятор антитромбин-III, который взаимодействуя с ферментом системы свертывания крови тромбином, инактивирует последний. Примером внутриклеточного белка-модулятора может служить кальмодулин. Он присутствует в свободном неактивном состоянии в цитозоле клеток различных органов и тканей. При увеличении концентрации в цитозоле ионов Са2+ образуется Са-кальмодулиновый комплекс, конформация кальмодулина изменяется и Са-кальмодулиновый комплекс приобретает способность взаимодействовать с различными внутриклеточными ферментами. При этом взаимодействии конформация белка-фермента изменяется и, следовательно, изменяется его каталитическая активность. При снижении концентрации Са2+ в цитозоле Са-кальмодулиновый комплекс распадается, свободный кальмодулин из-за изменения конформации молекулы теряет сродство к ферменту. В результате фермент высвобождается из комплекса и его каталитическая активность возвращается к исходному уровню. Этим способом регулируется каталитическая активность таких ферментов как гуанилатциклаза, фосфодиэстераза циклических нуклеотидов, пируваткарбоксилаза, НАД-киназа и др.

Проферменты, преферменты, зимогены, неактивные предшественники ферментов, образующиеся в процессе их биосинтеза. Превращаются в активные ферменты в результате реакции т. н. ограниченного протеолиза: после расщепления обычно одной пептидной связи в молекуле П. происходит частичное изменение её структуры, которое приводит к окончательному формированию активного центра фермента. В виде П. синтезируются многие протеолитические ферменты животных и бактерий (типичные П. — пепсиноген, трипсиноген, протромбин), а также фосфолипаза. Биологическое значение П. заключается в предотвращении преждевременного проявления ферментативной активности внутри клеток и тканей, в которых осуществляется биосинтез ферментов.

 

2.4 Медицинская энзимология. Первичные и вторичные энзимопатии, примеры. Энзимодиагностика и энзимотерапия, примеры.

Медицинская энзимология.

Применение в медицинской практике ферменты находят в качестве диагностических (энзимодиагностика) и терапевтических (энзимотерапия) средств. Ферменты также используются в качестве специфических реактивов для определения ряда метаболитов.  Например, фермент глюкозооксидазу применяют для количественного определения глюкозы в моче и крови; фермент уреазу используют для оценки содержания в биологических жидкостях мочевины; с помощью различных дегидрогеназ выявляют наличие соответствующих субстратов, например пирувата, лактата, этилового спирта и т.д.

Энзимопатии.

Энзимопатии - заболевания, обусловленные отсутствием какого-либо фермента или изменением его активности.

Различают энзимопатии первичные (наследственные) и вторичные (приобретенные или алиментарные). Приобретенные энзимопатии, как и вообще протеинопатии, по-видимому, наблюдаются при всех заболеваниях.

При первичных энзимопатиях дефектные ферменты наследуются в основном, по рецессивно-аутосомному типу. При этом нарушается метаболический путь, содержащий дефектный фермент. Развитие заболевания в этом случае может происходить по одному из «сценариев»:

ü нарушается образование конечных продуктов, что вызывает недостаток определенных веществ (например, при альбинизме не вырабатывается пигмент в клетках кожи);

ü накапливаются субстраты-предшественники, оказывающие токсическое действие на организм (например, при алкаптонурии накапливается промежуточный метаболит - гомогентезиновая кислота, которая откладывается в суставах, вызывая в них воспалительные процессы).

ü Нарушение образования конечных продуктов и накопление субстратов - предшественников. Отмечают заболевания, когда одновременно недостаток продукта и накопление исходного субстрата формируют клиническую картину. Их примером является болезнь Гирке (гликогеноз I типа), при которой наблюдается гипогликемия в перерывах между приемами пищи. Это связано с нарушением распада гликогена в печени и выходом из нее глюкозы вследствие дефекта фермента глюкозо-6-фосфатазы. Одновременно у таких пациентов увеличиваются размеры печени (гепатомегалия) вследствие накопления в ней гликогена.

Вторичные энзимопатии являются следствием тех или иных патологических процессов, сопровождающихся нарушением активности ферментов. Так например, причиной развития вторичной лактазной недостаточности могут являться: кишечные инфекции вирусной и бактериальной этиологии, паразитарные заболевания (лямблиоз и др.), синдром короткой кишки (пострезекционный), целиакия, токсическое и лекарственное поражения кишечника (на фоне лучевой и химиотерапии, антибиотикотерапии).

Одним из вариантов вторичных энзимопатий являются алиментарные энзимопатии – патологические состояния, обусловленные стойкими нарушениями активности ферментов в связи с характером питания. Алиментарные энзимопатии могут быть обусловлены длительным дефицитом белка в питании (например при квашиоркоре), нарушением биосинтеза коферментов при витаминной недостаточности, угнетением синтеза металлоферментов при низком содержании в рационе соответствующих минеральных веществ. К алиментарным энзимопатиям относят и так называемые токсические энзимопатии, связанные с угнетением активности или биосинтеза отдельных ферментов различными естественными компонентами пищевых продуктов (ингибиторы протеолитических ферментов, антивитамины и др.) или чужеродными веществами (например пестицидами), содержащимися в них.

Энзимодиагностика заключается в постановке диагноза заболевания (или синдрома) на основе определения активности ферментов в биологических жидкостях человека.

• Принципы энзимодиагностики основаны на следующих закономерностях:

ü в норме в сыворотке крови содержатся ферменты, выполняющие специализированные функции, например, участвующие в свертывающей системе крови. Клеточные ферменты практически не проникают из неповрежденных клеток в кровь. В минимальных количествах некоторые ферменты клеток могут определяться в крови;

ü при повреждении мембран клеток (воспаление, некроз) в крови или других биологических жидкостях (например, в моче) увеличивается количество внутриклеточных ферментов поврежденных клеток, активность которых можно зарегистрировать специальными биохимическими тестами;

ü для энзимодиагностики используют ферменты, имеющие преимущественную или абсолютную локализацию в определенных органах (органоспецифичность);

ü количество высвобождаемого фермента должно быть пропорционально степени повреждения ткани и достаточно для определения его активности;

ü активность ферментов в биологических жидкостях, обнаруживаемых при повреждении клеток, отличается от нормальных значений и стабильна в течение достаточно длительного времени (сутки);

ü появление в плазме крови ферментов, имеющих только цитозольную локализацию, свидетельствует о воспалительном процессе; при обнаружении митохондриальных или ядерных ферментов можно говорить о более глубоких повреждениях клетки, например некрозе.

ü Энзимодиагностика используется для установления диагноза при заболеваниях различных органов. Набор анализов зависит от возможностей конкретной биохимической лаборатории и постоянно совершенствуется. Наиболее распространены следующие энзимодиагностические тесты:

ü при заболеваниях сердца (инфаркт миокарда) - лактадегидрогеназа, креатинкиназа, аспартатаминотрансфераза, аланинаминотрансфераза. Одним из первых белков при инфаркте миокарда в крови появляется белок - тропонин;

ü при заболеваниях печени - аланинаминотрансфераза, аспартатаминотрансфераза, ацетилхолинэстераза, гамма-глутамилтранспептидаза. При заболеваниях поджелудочной железы - панкреатическая амилаза, липаза;

ü при заболеваниях простаты - кислая фосфатаза.

Применение ферментов в качестве лекарственных препаратов (энзимотерапия) активно развивают в следующих направлениях:

• заместительная терапия - использование ферментов в случае их недостаточности;

• элементы комплексной терапии - применение ферментов в сочетании с другой терапией.

Заместительная энзимотерапия эффективна при желудочно-кишечных заболеваниях, связанных с недостаточностью секреции пищеварительных соков. Например, пепсин используют при гастритах со сниженной секреторной функцией.

Протеолитические ферменты (трипсин, химотрипсин) применяют при местном воздействии для обработки гнойных ран с целью расщепления белков погибших клеток, для удаления сгустков крови или вязких секретов при воспалительных заболеваниях дыхательных путей.

 

Ферментные препараты стали широко применяться при тромбозах и тромбоэмболиях для разрушения тромба. С этой целью используют препараты фибринолизина, стрептолиазы, стрептодеказы, урокиназы.

                                                   

Общая характеристика витаминов, классификация. Гиповитаминозы, авитаминозы, гипервитаминозы, причины их возникновения. Водорастворимые витамины группы В и витамин С, их участие в метаболических процессах. Нарушение физиологических функций организма при недостатке витаминов, их причины.

Витамины - экзогенные низкомолекулярные БАВ, необходимые для оптимального обмена веществ и жизнедеятельности организма.

Источники витаминов. В отличие от других БАВ, синтез которых происходит в организме, большинство витаминов поступает в организм с пищей. Некоторые витамины синтезируются микроорганизмами в кишечнике, но в недостаточных количествах (витамин D).

Образование. Витамины образуются путем биосинтеза в растительных клетках и тканях. Обычно в растениях они находятся не в активной, но высокоорганизованной форме, которая, наиболее подходит человеческому организму, а именно - в виде провитаминов.

Основные признаки витаминов:

ü содержатся в пище в незначительных количествах (микро-компоненты);

ü либо не синтезируются в организме вообще, либо синтезируются в незначительных количествах микрофлорой кишечника;

ü не выполняют пластических функций;

ü не являются источниками энергии;

ü являются кофакторами многих ферментативных систем;

ü оказывают биологическое действие в малых концентрациях и влияют на все обменные процессы в организме, требуются организму в очень небольших количествах: от нескольких мкг до нескольких мг в день..

Основные формы нарушения обмена витаминов: авитаминозы, гиповитаминозы, гипервитаминозы и дисвитаминозы.

Авитаминозы - патологические состояния, развивающиеся вследствие отсутствия в организме витамина или невозможности реализации его эффектов.

Причины авитаминозов:

♦ Отсутствие витамина в пище.

♦ Нарушение всасывания витаминов в кишечнике.

♦ Нарушение транспорта витаминов в ткани и органы.

♦ Расстройства механизмов реализации эффектов витаминов (отсутствие или снижение чувствительности рецепторов к ним, дефицит субстратов, ферментов и других компонентов их эффекторного механизма).

Гиповитаминоз - патологическое состояние, возникающее в результате снижения содержания или недостаточности эффектов витамина в организме.



Поделиться:


Последнее изменение этой страницы: 2021-09-25; просмотров: 56; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.141.24.134 (0.034 с.)