Основні поняття хімічної термодинаміки 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Основні поняття хімічної термодинаміки



ПЕРШИЙ ЗАКОН ТЕРМОДИНАМІКИ

ТЕПЛОЄМКІСТЬ. ТЕПЛОТА НАГРІВАННЯ

Розрахунки теплоємкості

 

Мольну істинну ізобарну теплоємкість звичайно визначають за рівнянням емпіричного ступеневого ряду теплоємкості (2.9).

Середню мольну ізобарну теплоємкість можна визначити за допомогою ступеневого ряду

                 

                           (2.10)

або з використанням функцій тепловмісту

            

                                     .                        (2.11)

Тепловміст  - величина, що показує кількість теплоти, яка потрібна для нагрівання одного моль речовини (при Р = 1,013×105 Па) від 0 до Т К (рис. 2.2). Величини тепловмісту наводяться у довідниках (табл. Д.4). Розмірність тепловмісту – Дж/моль.

В металургійній практиці важливо знати теплоємкість сталі, чавуну, кольорових сплавів, шлаків і т.д. Беручи до уваги, що теплоємкість – екстенсивна властивість системи і до неї придатне правило адитивності, теплоємкість будь-якої суміші можна визначити за рівнянням

 

,      (2.12)

де - питома теплоємкість і-го компоненту суміші, Дж/(кг×К); %мас.1,2,…і – масовий відсоток і-го компоненту суміші.

 

Теплота нагрівання

 

Теплотою нагрівання речовини () називають величину, що показує, яку кількість теплоти потрібно надати одиниці маси речовини (звичайно одному моль), щоб нагріти її від Т1 до Т2.

Розрахунки теплоти нагрівання базуються на рівняннях, що наведені у попередніх розділах.

Теплоту нагрівання одного моль  речовини можна визначити за емпіричним ступеневим рядом (2.7; 2.9)

                 

               ,  (2.13)

за допомогою функцій тепловмісту речовин (1.6)

               

                                                               (2.14)

або через середню теплоємкість речовини (2.7; 2.8)

                                   .                     (2.15)

Якщо треба визначити теплоту нагрівання будь-якої маси (m) речовини, то рівняння (2.13-1.15) треба множити на величину числа моль (n) речовини, яку можна знайти з співвідношення . Наприклад,

          і т.д. (2.16)

Якщо відома питома теплоємкість речовини, то можна відразу визначити теплоту нагрівання всієї маси за рівнянням

                                    ,                       (2.17)

а при визначенні теплоти, необхідної для нагрівання і плавлення сполуки, за рівнянням

                                ,                   (2.18)

де Qр,пл. – теплота плавлення, Дж/кг.

У випадках, коли в інтервалі температур Т1¸Т2 має місце фазове перетворення (плавлення, кипіння), треба користуватися в розрахунках рівняннями (2.14-2.15), в яких всі можливі в цьому інтервалі температур фазові перетворення враховані. При обчисленні теплоти нагрівання за рівнянням (2.13) необхідно врахувати теплоту фазового перетворення і зміну коефіцієнтів емпіричного ступеневого ряду зі зміною агрегатного стану речовин. Рівняння (2.13) у цьому разі має вигляд

.     (2.19)

При визначенні ізохорної теплоти нагрівання користуються ізохорною теплоємкістю, наприклад

                                    .                      (2.20)

На практиці часто виникає потреба визначення теплоти нагрівання складної системи – суміші (сталі, феросплаву і т.д.). Розрахунки базуються на адитивних властивостях теплоти нагрівання і проводяться за рівнянням

          , (2.21)

де n1,2,…,і – кількість моль і-ої речовини в суміші;  - теплота нагрівання і-ої речовини, Дж/моль.

 

Задача 2.1. Визначити істинну мольну ізохорну теплоємкість марганцю при 400 К і середню питому теплоємкість в інтервалі температур від 300 до 500 К.

Розв'язання. Істинну мольну ізобарну теплоємкість марганцю можна знайти, скориставшись довідниковими даними (табл. Д.2), за рівнянням (2.9)

    

При 400 К марганець знаходиться в твердому агрегатному стані (табл. Д.2), тому

                               Дж/(моль×К).

Середню мольну теплоємкість марганцю в указаному інтервалі температур можна визначити за рівнянням (2.10)

Середня питома теплоємкість марганцю дорівнюватиме (2.1)

              Дж/(кг×К).

 

Задача 2.2. Визначити питому теплоємкість жаростійкої сталі, що містить (у мас. %): Cr – 20,0; Ni – 7,0; Mn – 5,0; Si – 1,5; W – 1,0; C – 0,4. Мольні теплоємкості елементів відповідно дорівнюють: 23,35; 25,78; 26,28; 19,19; 24,98; 8,54. Cр,Fe = 25,00 Дж/(моль×К).

Розв'язання. Питому теплоємкість сталі можна визначити за рівнянням (2.12), розрахувавши спочатку питомі теплоємкості елементів за рівнянням (2.1):

                       Дж/(кг×К).

Аналогічно визначають питому теплоємкість інших елементів і потім питому теплоємкість сталі, зваживши, що вміст заліза за умовами задачі складає 65,1%

         

 

Задача 2.3. Визначити теплоту, яка потрібна для нагрівання 50 кг міді від 298 до 1500 К. Відомо, що Тпл.=1356 К; Ткип.=2843 К; Qпл.=12,98 кДж/моль.

Розв'язання. Теплоту нагрівання можна визначити за рівняннями (3.1 і 3.7), взявши коефіцієнти ступеневого ряду з табл. Д.2:

 

 

Задача 2.4. Визначити кількість коксу, яка потрібна для плавлення 10 т чавуну, в якому міститься 4,3% вуглецю. Початкова температура чавуну 298 К, температура плавлення 1428 К, теплота плавлення 96 кДж/кг, середня питома теплоємкість чавуну в інтервалі температур 298¸1428 К дорівнює 540Дж/(кг×К). Теплота згоряння коксу становить 3×104 кДж/кг, коефіцієнт корисної дії печі – 60%.

Розв'язання. Загальну кількість теплоти, що потрібна для нагрівання і плавлення чавуну розраховуємо за рівнянням (3.6)

         

Кількість коксу, яка теоретично потрібна для плавлення чавуну, складатиме

                          кг.

З урахуванням к.к.д. печі, кількість коксу, необхідного для плавлення 10 т чавуну, становитиме

                       кг.

 

 

ТЕРМОХІМІЯ

Хімічних реакцій

 

Термохімія базується на двох законах – Гесса і Кірхгофа.

Г.Гесс у 1836 році, ще до того, як було сформульоване перше начало термодинаміки, відкрив основний закон термохімії, названий законом сталості сум теплоти: тепловий ефект хімічної реакції не залежить від шляху реакції (від проміжних реакції), а залежить лише від виду та стану початкових і кінцевих речовин.

Слід зазначити, що це формулювання має сенс тільки за умов, що хімічна реакція здійснюється при сталих тиску або об'єму, коли незалежність від шляху процесу може бути розповсюджена і на теплоти процесу.

Проілюструємо закон Гесса на реакціях відновлення оксидів заліза до заліза оксидом вуглецю (ІІ), що відбуваються у доменному процесі. Відновлення оксиду заліза (ІІІ) можливе як безпосередньо до заліза, так і через проміжну стадію утворення оксиду заліза (ІІ). Наведемо схему процесів.

 

Початковий стан                                                                     Кінцевий стан

Fe2O3 + 3CO = 2Fe + 3CO2 + DH1          

 

                                                Проміжний стан

Fe2O3+CO=2FeO+CO2+DH2                           2FeO+2CO=2Fe+2CO2+DH3

 

Перший шлях: Fe2O3 + 3CO = 2Fe + 3CO2 + DH1,     DH1 = -26,78 кДж.

Другий шлях:  Fe2O3 + CO = 2FeO + CO2 + DH2,     DH2 = 9,48 кДж;

                          2FeO + 2CO = 2Fe + 2CO2 + DH3,     DH3 = -36,26 кДж.

При складанні реакцій другого шляху, одержуємо термохімічну реакцію

                          Fe2O3 + 3CO = 2Fe + 3CO2 + DH2 + DH3,

яка тотожна реакції, що здійснена першим шляхом. Отже і теплові ефекти реакцій однакові. Тому можна записати

                                             DH1 = DH2 + DH3,

що підтверджується чисельними розрахунками. Дійсно,

                                -26,78 = 9,48 + (-36,26) = -26,78.

Закон Гесса має велике значення, бо дозволяє визначити теплові ефекти реакцій без їх експериментального проведення. Це особливо важливо для реакцій, що не проходять однозначно і до кінця, а також для реакцій, що відбуваються в умовах високих температур і тисків. В таких випадках користуються законом Гесса і його наслідками, основними з яких є такі:

- Теплові ефекти прямої і зворотної хімічних реакцій однакові за величиною та протилежні за знаком

                                                DНпр. = - DНзв.                                     (3.1)

Проілюструємо цей наслідок на прикладі реакції, що відбувається при корозії заліза:

пряма реакція    3Fe + 2O2 = Fe3O4 + DНпр.;

зворотна реакція Fe3O4 = 3Fe + 2O2 + DНзв..

При складанні рівнянь реакцій, одержуємо:

                                             DНпр. + DНзв. = 0,

тобто

                                                DНпр. = -DНзв.

Наступні наслідки з закону Гесса дозволяють обчислити стандартні теплові ефекти реакцій, користуючись деякими термодинамічними характеристиками, величини яких відомі.

- Стандартний тепловий ефект хімічної реакції дорівнює алгебраїчній сумі стандартних теплот утворення кінцевих речовин (продуктів) мінус алгебраїчна сума стандартних теплот утворення початкових (вихідних) речовин, тобто

                        ,             (3.2)

де ni – кількість моль і-ої речовини (стехіометричний коефіцієнт перед даною речовиною в рівнянні реакції);  - стандартна теплота утворення і-ої речовини, кДж/моль.

Теплотою утворення сполуки називається тепловий ефект реакції утворення одного моль даної сполуки з відповідних простих речовин (але не атомів). Наприклад, теплоти реакцій

                        С + О2 = СО2  і  2Fe + 3/2 O2 = Fe2O3

є теплотами утворення СО2 і Fe2O3, а теплоти реакцій

                           СО + ½ О2 = СО2  і  Fe + O = FeO

не є теплотами утворення СО2 і FeO, бо СО – складна речовина, а О – атом кисню.

Звичайно користуються стандартними теплотами утворення речовин , які для багатьох сполук визначені і наводяться у довідниках (табл. Д.2). Для простих речовин (С, Fe, Cu, Mn, O2, H2 тощо) стандартні теплоти утворення дорівнюють нулю. За одиницю вимірювання теплот утворення в системі СІ взято Дж/моль (кДж/моль).

Тепловий ефект реакції

                                     Fe3O4 + 4CO = 3Fe + 4CO2,

визначений за допомогою стандартних теплот утворення реагуючих речовин, складатиме

      

Велике значення має наступний наслідок з закону Гесса, який дозволяє визначити стандартний тепловий ефект реакції шляхом алгебраїчного підсумовування рівнянь допоміжних реакцій, стандартні теплові ефекти яких відомі.

- Правило: якщо Х = ± mI ± nII ± … ± iI,                                   (3.3)

то                 ,          (3.4)

де Х – основна (базова) реакція, для якої треба визначити стандартний тепловий ефект ; І, ІІ, …, І – допоміжні реакції, стандартні теплові ефекти яких відомі  і т.д.; m, n, …, i – коефіцієнти, що підбираються до кожної з допоміжних реакцій.

При розрахунках за цим правилом треба виконати наступні умови:

- підібрати допоміжні реакції. Їх вибирають таким чином і стільки, щоб речовини базової реакції зустрічались в допоміжних реакціях мінімум раз, а речовини, що не входять до базового рівняння, повинні зустрічатись в допоміжних реакціях мінімум двічі. Звичайно прагнуть брати найменшу кількість допоміжних реакцій (оптимально – дві);

- підібрати для кожної допоміжної реакції індикатор – речовину, що міститься в даній допоміжній і в базовій реакціях, але відсутня в інших допоміжних реакціях;

-  підібрати для кожної допоміжної реакції знаки за правилом: якщо індикатор в допоміжній і базовій реакціях знаходиться по один бік від знаку рівності, то беруть знак плюс, а якщо по різні боки – знак мінус;

- підібрати коефіцієнти для кожної допоміжної реакції за правилом: коефіцієнт визначається діленням стехіометричного коефіцієнту перед індикатором базового рівняння реакції на стехіометричний коефіцієнт перед індикатором допоміжної реакції;

- провести перевірку правильності виконання приведених вище умов. Якщо перевірка позитивна (тобто в результаті алгебраїчного підсумовування допоміжних реакцій за рівнянням (3.3) одержуємо базове рівняння), то розраховують  за рівнянням (3.4).

Закон Гесса дозволяє визначити лише стандартні теплові ефекти реакцій. Щоб визначити за законом Гесса теплові ефекти при будь-якій температурі бракує даних. У цьому разі користуються законом Кірхгофа.

 

Закон Кірхгофа

Здебільшого металургійні процеси проводяться не при кімнатній (298 К), а при значно вищих температурах, оскільки реакції окислення-відновлення і розкладу при низьких температурах протікають дуже повільно.

Тому стає задача визначати теплові ефекти реакцій при будь-яких температурах. Це можна зробити за законом Кірхгофа. Вивід закону проведемо, використавши реакцію відновлення заліза з оксидів воднем

                                      Fe2O3 + 3H2 = 2Fe + 3H2O.

Як вище вказувалось, тепловий ефект реакції – це зміна ентальпії системи у ході реакції. Тому

                             .

Візьмемо диференціал рівняння по температурі при сталому тиску і, пам'ятуючи рівняння (2.5), одержимо:

       

або

                                       ,                            (3.5)

де DСр,і - зміна теплоємкості у ході реакції, яку можна визначити за рівнянням

                                    DСр,і = ånіСр,кін.,і - ånіСр,поч.,і.

Рівняння (3.5) є законом Кірхгофа в диференціальній формі: температурний коефіцієнт ізобарного теплового ефекту реакції  дорівнює зміні ізобарної теплоємкості реакції.

Аналіз рівняння (3.5) свідчить про складну залежність теплового ефекту реакції від температури.

Дійсно, при DСр,і > 0 і величина >0, тобто з ростом температури тепловий ефект реакції збільшується. Якщо DСр,і < 0, то і <0. отже з ростом температури тепловий ефект реакції зменшується. Нарешті, при DСр,і = 0 і величина . У цьому випадку температура на тепловий ефект реакції не впливає.

При зміні температури теплоємкості реагуючих речовин змінюються не однаково, тому можливі випадки, коли для реакції при одних температурах DСр,і > 0, а при других - DСр,і < 0 і навпаки. У цьому разі залежність теплового ефекту від температури описується кривими, наведеними на рис. 3.1.

Закон Кірхгофа в диференціальній формі дозволяє лише якісно оцінити вплив температури на тепловий ефект реакції. Щоб мати змогу кількісно обчислювати теплові ефекти при будь-яких температурах, треба проінтегрувати рівняння (3.5) в межах температур від Т1 до Т2:

 

 

 


Рис. 3.1. Залежність теплового ефекту реакції від температури в умовах

зміни знаку величини åniCp,i

 

                                ; dDH = DCр,і × dT;

                                           ;

                                    .                         (3.6)

Рівняння (3.6) відоме як закон Кірхгофа в інтегральній формі: тепловий ефект реакції при будь-якій температурі (Т2) дорівнює тепловому ефекту цієї реакції при певній температурі (Т1), плюс інтеграл Кірхгофа.

На практиці найчастіше беруть Т1 = 298 К, бо стандартні теплові ефекти багатьох реакцій відомі, а при потребі їх можна визначити за законом Гесса. Тому закон Кірхгофа можна представити рівнянням

                                    .                         (3.7)

Розв'язати інтеграл Кірхгофа можна двома методами. Перший метод полягає в використанні емпіричного ступеневого ряду теплоємкості

                      

, (3.8)

де Dа, Dв, Dс і Dс' – зміна коефіцієнтів емпіричного ступеневого ряду у ході реакції, яку можна визначити за рівнянням:

;

 і т.д.

При обчисленні інтегралу Кірхгофа за другим методом користуються функціями тепловмісту реагуючих речовин

                        ,             (3.9)

де  і  - зміна функцій тепловмісту у ході реакції, яку можна визначити за рівняннями:

                  ;

              . (3.10)

Якщо в інтервалі температур від 298 до Т К є фазові перетворення, обчислення теплового ефекту треба вести за рівнянням (3.9), в якому всі можливі фазові перетворення враховані. При користуванні рівнянням (3.8) необхідно врахувати теплоти фазових перетворень, а також зміну теплоємкості речовини, що при цьому відбувається. У цьому випадку рівняння (3.8) набуває вигляду

                                       (3.11)

 

Задача 3.1. Визначити теплові ефекти реакції (Х)

                                   Х. Fe3O4 + 4CO = 3Fe + 4CO2,

що має місце при виплавці чавуну у доменному процесі, при 298 і 1000 К. Зробити висновки про вплив температури на тепловий ефект реакції.

Розв'язання. Стандартний тепловий ефект реакції визначимо шляхом алгебраїчного підсумовування допоміжних реакцій, які підбираємо, користуючись табл. Д.3 і правилами, наведеними на стор. 26:

І. Fe3O4 + CО = 3FeO + CO2  +1              = 39,60 кДж;

ІІ. FeO + CO = Fe + CO2        +3                = -18,13 кДж.

Перевірка. Підсумовуючи допоміжні рівняння за (3.3), одержуємо

              Fe3O4 + CO + 3FeO + 3CO = 3FeO + CO2 + 3Fe + 3CO2.

Після скорочення і об'єднання однакових речовин, маємо рівняння

                                       Fe3O4 + CO = 3Fe + CO2,

що відповідає базовому рівнянню (Х). Перевірка позитивна. Тепловий ефект визначаємо за рівнянням (3.4)

            кДж.

Оскільки <0, то при 298 К досліджувана реакція проходить з виділенням теплоти (екзотермічна реакція).

Тепловий ефект при 1000 К визначимо за рівнянням (3.8)

    .

                 

      

             

     

1000 < 0, отже реакція і при 1000 К проходить з виділенням теплоти (екзотермічна). При зростанні температури від 298 до 1000 К тепловий ефект реакції зменшується від –14,79 до –62,30 кДж.

 

Задача 3.2. Визначити тепловий ефект реакції

Fe3O4 + 4CО = 3Fe + 4CO2

при 1100 К. Відомо, що при 1033 К залізо з a-форми переходить в b-форму і теплота переходу (Qпер.) становить 2,76 кДж/моль.

Роз'язання. Тепловий ефект реакції визначаємо за рівнянням (3.11), яке в цьому випадку має вигляд

.

Візьмемо Dа, Dв і Dс' до перетворення заліза з попередньої задачі, а після перетворення – розрахуємо по аналогії:

Dа = 3×37,68+4×44,14-86,27-4×28,41 = 77,69 Дж/К;

Dв = 10-3(3×0+4×9,04-208,92-4×4,10) = -189,16 Дж/К2;

Dс' = 105[3×0+4×(-8,54)-0-4×(-0,46)] = -32,32×105 Дж×К.

     

 

Задача 3.3. Марганець одержують відновленням його оксидів алюмінієм. Реакція природнього MnO2 з алюмінієм проходить дуже бурхливо, тому MnO2 поперед прожарюють до Mn2O3, який реагує з алюмінієм більш спокійно

                                  3Mn3O4 + 8Al = 9Mn + 4Al2O3.

Визначити теплові ефекти реакції при 298 і 1000 К. Зробити висновок про вплив температури на тепловий ефект реакції.

Розв'язання. Стандартний тепловий ефект реакції визначимо за рівнянням (3.2), взявши  з табл. Д.2.

    

Тепловий ефект при 1000 К знайдемо за рівнянням (3.9), скориставшись даними табл. Д.4.

                      ;

 

                    кДж.

Таким чином, реакція відновлення марганцю протікає з виділенням теплоти і при 298, і при 1000 К, тобто є екзотермічною. З підвищенням температури тепловий ефект реакції дещо збільшується.

 

ДРУГИЙ ЗАКОН ТЕРМОДИНАМІКИ

 

Процесів (реакцій)

Зміну ентропії при фазовому перетворенні речовини (DSф.п.) можна визначити за рівнянням

                                        ,                            (4.1)

де DНф.п.(Qф.п.) – теплота фазового перетворення, Дж/моль; Тф.п. – температура фазового перетворення, К.

Ентропію речовини при будь-якій температурі можна визначити з наступних міркувань:

                                         ;

                                  ;   ;

                      ;     .           (4.5)

Рівняння (4.5) можна розв'язати як за допомогою емпіричного ступеневого ряду

      , (4.6)

так і через функції тепловмісту і приведеної енергії Гіббса

                                  ,                      (4.7)

де  - приведена енергія Гіббса, Дж/(моль×К);  - тепловміст, кДж/моль.

Приведена енергія Гіббса для багатьох речовин наводиться в довідниках (табл. Д.4).

Якщо в інтервалі температур від 298 до Т К має місце фазове перетворення, треба користуватись рівнянням (4.7), бо рівняння (4.6) у цьому випадку набуває вигляду

. (4.8)

Як вже вказувалось, для визначення напрямку хімічної реакції в ізольованій системі треба розраховувати зміну ентропії реакції (DS). Розглянемо цей випадок на прикладі одержання цинку пірометалургійним методом. У цьому випадку цинкову руду випалюють до оксиду цинку, останній змішують з коксом і нагрівають до 1370-1470 К. При цьому відбувається реакція

                                           ZnO + C = Zn + CO,

зміна ентропії якої при сталій температурі буде дорівнювати

                         

При визначенні SТ,і за допомогою емпіричного ступеневого ряду теплоємкості одержимо рівняння

, (4.9)

де  - зміна стандартної ентропії реакції, Дж/К; Dа, Dв, Dс і Dс' – зміна коефіцієнтів емпіричного ступеневого ряду.

Якщо ж визначити SТ,і через тепловміст і приведену енергію Гіббса, зміна ентропії реакції виражається рівнянням

                              ,                 (4.10)

де  - зміна тепловмісту у ході реакції, кДж;  - зміна приведеної енергії Гіббса, Дж/К.

Наведені рівняння визначення DSТ (4.9-4.10) придатні як для оборотних, так і необоротних процесів. Це є наслідком властивості ентропії як функції стану системи, бо зміна функції стану від шляху процесу не залежить.

 

Ентропія і імовірність

Розглядаючи зміну ентропії в різних процесах, можна помітити, що збільшення ентропії завжди супроводжується зростанням хаотичності молекулярного стану. Наприклад, перехід системі з кристалічного в рідкий або газоподібний стани супроводжується зменшенням упорядкування і зростанням хаотичності у розподілі молекул. Одночасно зростає і ентропія системи.

Макроскопічний стан системи є сукупністю мікростанів, в яких беруть участь молекули з різними ознаками. Імовірність кожного макростану пропорційна числу мікростанів, через які він здійснюється. Це число називають термодинамічною імовірністю (W). У 1896 році Больцман дав визначенню ентропії як термодинамічної імовірності

                                                   ,                                     (4.11)

де К – стала Больцмана (1,38×10-23 Дж×К-1).

Поняття термодинамічної імовірності дозволяє уточнити зміст другого закону термодинаміки. З точки зору статичної термодинаміки, процеси, що наближають систему до стану рівноваги, відповідають переходу системи від менш імовірних станів до більш імовірних. Процеси, що віддаляють систему від стану рівноваги не є неможливими, а є менш імовірними.

Розрахунки свідчать, що для систем, які складаються з великої кількості частинок, більш імовірний напрямок самодовільного процесу абсолютно неминучий, а процеси, що виводять систему з стану рівноваги – практично неможливі. Чим з меншого числа частинок складається система, тим менш строго дотримується це ствердження. Отже другий закон термодинаміки виконується лише для систем з великою кількістю частинок, тобто має статистичний характер.

Задача 4.1. Визначити ентропію 10 кг міді при 2000 К, якщо температура плавлення міді 1356 К, температура кипіння – 2843 К, теплота плавлення – 12,98 кДж/моль. Необхідні для розрахунку дані взяти з таблиць довідника.

Розв'язання. Ентропію міді при 2000 К можна обчислити за рівнянням (4.8)

                  .

Враховуючи рівняння (4.6), ентропія 10 кг міді при 2000 К дорівнюватиме

    

 

Задача 4.2. По зміні ентропії визначити напрямок реакції одержання цинку пірометалургійним методом за реакцією

                                            ZnO +C = Zn + CO

в ізольованій системі при 1000 К. Необхідні для розрахунків дані взяти з таблиць довідника.

Розв'язання. Зміну ентропії реакції можна знайти за рівнями (4.10)

                          .

Користуючись даними табл. Д.4, визначимо:

      

Отже, зміна ентропії реакції дорівнюватиме

                              Дж/К.

Оскільки DS1000 > 0 (ентропія зростає), то реакція при 1000 К в ізольованій системі проходитиме самодовільно в прямому напрямку.

 

 

ХАРАКТЕРИСТИЧНІ ФУНКЦІЇ І

ТЕРМОДИНАМІЧНІ ПОТЕНЦІАЛИ

 

Термодинамічні потенціали

В ізольованих системах зміна ентропії може служити критерієм напрямку самодовільних процесів. Проте, в металургійній практиці більшість процесів протікає не в ізольованих, а у відкритих системах. Для цих випадків в якості критеріїв напрямку процесів потрібні інші термодинамічні функції. Якщо процеси відбуваються при сталій температурі, то критерієм їх напрямку може служити робота. Важливим є те, що величина роботи дорівнює зміні деякої функції стану системи. Виведемо цю функцію для ізобарно-ізотермічного процесу.

Елементарна робота (dW) складається з об'ємної роботи (Wоб = PdV) і суми інших робіт – корисної роботи (W'), тобто

                                              dW = PdV + W'.

Зваживши, що при оборотному процесі dQ = ТdS (4.1), запишемо на основі першого закону термодинаміки рівняння:

                                dU = dQ - dW = ТdS – PdV - dW';

                                        -dW' = dU - ТdS + PdV.                             (5.1)

Враховуючи, що U і S – функції стану системи, а V – параметр стану, рівняння (5.1) можна подати у вигляді

                                        -dW' = d(U – ТS + PV).                             (5.2)

Вводячи в (5.2) позначення: Н = U + PV і G = Н – ТS, одержуємо:

                                                   -dW' = dG;

                                           W' = G1 – G2 = - D G,                               (5.3)

де G – функція стану системи, яка у 1875 році була запропонована Гіббсом у якості критерія напрямку ізобарно-ізотермічних процесів і одержала назву ізобарно-ізотермічного (коротко ізобарного) термодинамічного потенціалу системи або вільної енергії Гіббса.

Таким чином, в оборотних процесах максимальна корисна робота при ізобарно-ізотермічних процесах дорівнює зменшенню ізобарного потенціалу.

В необоротних процесах, де TdS > dQ (4.2), робота одержується меншою, ніж зміна ізобарного потенціалу

                                                   W' < -DG.                                        (5.4)

Щоб визначити вплив температури і тиску на величину ізобарного потенціалу, диференцюємо рівняння

                                      G = H – TS = U + PV – TS

за змінними Р і Т

                              dG = dU – TdS + SdT + PdV + VdP.

Оскільки,

                                    dU = TdS – PdV - dW' (5.1),

то

                                        dG = -SdT + VdP - dW'.

З цього рівняння при сталих Р і Т одержуємо в диференціальній формі рівняння (5.3). При відсутності корисної роботи одержуємо для оборотних процесів

                                             dG = -SdT + VdP,

а для необоротних процесів

                                             dG < -SdT + VdP.

Часткові похідні функції G:

                                   і

показують, що ізобарний потенціал зростає із збільшенням тиску і зменшується при підвищенні температури (рис. 5.1).

 

 

 


Рис. 5.1. Вплив температури і тиску на величину ізобарно-ізотермічного

потенціалу

 

Якщо процес відбувається необоротно, то при сталих тиску і температурі маємо (¶G)р,т < -dW', тобто одержуємо рівняння (5.4) в диференціальній формі. При відсутності корисної роботи одержуємо рівняння (¶G)р,т < 0.

Взагалі (¶G)р,т £ 0, звідки випливає, що ізобарний потенціал системи, яка знаходиться при сталих тиску і температурі не змінюється при оборотних процесах і зменшується при необоротних процесах.

Це можна переформулювати таким положенням: ізобарно-ізотермічний потенціал системи, що знаходиться при сталих тиску і температурі, прагне зменшитись у природних (самодовільних) процесах. Коли він досягає мінімального значення, то в системі встановлюється стан рівноваги.

Таким чином, умовами рівноваги для ізобарно-ізотермічних процесів є:

                                      (¶G)р.т = 0;   (¶2G)р.т > 0.

Останні співвідношення справедливі тільки в тому випадку, коли системою не виконуються інші види робіт, крім об'ємної.

Якщо вираз G = H – TS записати для ізобарно-ізотермічного процесу, то одержимо рівняння Гіббса-Гельмгольца

                                              DG = DH - TDS,                                   (5.5)

яке можна переписати таким чином

                                              DH = DG + TDS.

Останнє рівняння свідчить, що зміна ентальпії системи складається з двох частин. Перша частина – це зміна ізобарного потенціалу, що дорівнює роботі, яку можна одержати у випадку проведення оборотного процесу. Друга частина TDS – це теплота, що при жодних умовах не може бути перетворена в роботу, але яка при оборотному процесі передається іншій системі або розсіюється в навколишньому середовищі.

З рівняння Гіббса-Гельмгольца видно, що навіть при здійсненні процесу (реакції) в ідеальних умовах оборотності неможливо перетворити всю ентальпію вихідних речовин в роботу. Ту частину енергії, що може бути перетворена в роботу (DG), називають вільною (роботоспроможною). TDS називають зв'язаною енергією (нероботоспроможною), оскільки вона не перетворюється в роботу.

Розмірковуючи аналогічно вищевикладеному, для ізохорно-ізотермічних процесів можна одержати

                                                    W' = -DF,



Поделиться:


Последнее изменение этой страницы: 2021-12-15; просмотров: 32; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.56.28 (0.211 с.)