Дальнейшие промежуточные эксперименты 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Дальнейшие промежуточные эксперименты



 

6.21. Ко времени организации Металлургического проекта большинство физиков, знакомых с состоянием вопроса, считали, что система, в которой будет развиваться цепная реакция, вероятно, осуществима, если можно будет получить достаточно чистый графит и чистый металлический уран. Было выполнено достаточное число работ по резонансному поглощению, по теории поглощения и диффузии нейтронов в котле и по промежуточным экспериментам, чтобы можно было рассчитать конструкцию решетки, которая имела бы очень большую вероятность поддержать цепную реакцию. Тем не менее, в экспериментальных данных и в приближениях, допущенных в теоретических вычислениях, была неопределенность. Предстоял выбор между двумя альтернативами: 1) построить котел по наилучшей возможной схеме; 2) произвести более точные определения ядерных постоянных, провести промежуточные эксперименты и улучшить расчеты. Едва ли можно было сомневаться, что первая альтернатива представлялась наиболее быстро ведущей к цели производству плутония. Было много существенных вопросов, которые могли быть быстрее разрешены в процессе действия котла, чем путем выполнения ряда экспериментов в небольших масштабах. К сожалению, в то время и еще в течение 9 месяцев нельзя было получить достаточного количества материалов. Поэтому пришлось выбрать вторую альтернативу, т. е. собрать все доступные сведения любыми имевшимися в распоряжении средствами.

6.22. Основной линией исследования была постановка ряда промежуточных экспериментов. В специальных условиях каждого промежуточного эксперимента можно было получить данные для проверки расчетов, основанных на отдельных вспомогательных опытах. Изменялось отношение окиси урана к графиту, применялись окиси различной чистоты, применялись блоки окиси различных размеров, различной формы и различной плотности, изменялись размеры решетки, испытывалось влияние окружения элементов окиси урана бериллием и парафином и, наконец, испытывались устройства с одинаковым типом решетки, но с различными общими размерами, чтобы проверить, будут ли одинаковы значения коэффициента размножения k (для бесконечных размеров), вычисленные на основании различных серий экспериментов. Э. Ферми занимался исследованием влияния примесей, С. К. Алисон испытаниями решеток различных размеров. Все эти эксперименты укрепили уверенность группы физиков в правильности вычисленного значения k и в том, что можно построить котел с коэффициентом k, превышающим 1. В июле от Малинкродта было получено достаточное количество очищенной окиси урана для постройки промежуточной установки #9. Так же, как и в предварительных экспериментах, радие-бериллиевый источник нейтронов помещался у основания решетки, и плотность нейтронов измерялась вдоль вертикальной оси котла. К этому времени уже было известно, что плотность нейтронов уменьшается экспоненциально с увеличением расстояния от источника нейтронов (отсюда часто употреблявшееся название «экспоненциальный опыт») и что, исходя из этой скорости уменьшения, можно вычислить коэффициент размножения k для бесконечно большого котла с той же структурой решетки. Впервые коэффициент размножения k, вычисленный таким образом на основании экспериментальных результатов, получился больше единицы (его значение оказалось равным 1,007). Еще до проведения этого эксперимента Комптон в докладе от 1 июля предсказывал, что можно будет получить значение k между 1,04 и 1,05 в котле, содержащем окись урана высокой очистки и графит, если только из котла будет удален воздух для того, чтобы предотвратить поглощение нейтронов азотом.

 

ВСПОМОГАТЕЛЬНЫЙ ЭКСПЕРИМЕНТ

 

 

ЗАПАЗДЫВАЮЩИЕ НЕЙТРОНЫ

 

6.23. Мы не будем упоминать множества различных вспомогательных экспериментов, выполненных за этот период. Однако, один такой эксперимент изучение запаздывания нейтронов мы рассмотрим, так как он представляет собою хороший пример тех экспериментов, какие приходилось выполнять, и так как в этом случае речь идет об эффекте, до сих пор не упоминавшемся, но чрезвычайно важном для управления котлом, в котором идет цепная реакция.

6.24. Из прежних исследований, из которых некоторые уже были опубликованы, известно, что около 1 % нейтронов, испускаемых в процессе деления, выбрасывается не немедленно, а испускается в течение некоторого периода времени явление, напоминающее β -излучение радиоактивных веществ с малым периодом полураспада. В опытах наблюдалось несколько периодов полураспада, самый продолжительный из которых имел порядок 1 минуты.

6.25. Уже сначала было ясно, что это время запаздывания приводит к своего рода инерции цепной реакции, позволяющей значительно облегчить управление. Если эффективный коэффициент размножения в котле несколько превысит значение 1, то плотность нейтронов не возрастет до опасных значений почти мгновенно, а будет нарастать постепенно, так что будет возможность ввести в действие управляющие устройства. (Другие интервалы времени, которые имеются в этом процессе, например, промежутки времени между соударениями, слишком малы, чтобы можно было ими воспользоваться).

6.26. Вследствие важности явления запаздывания нейтронов для управления было решено повторить и улучшить прежние измерения. (Тот факт, что это было скорее повторение, а не новые измерения, также типичен для значительной части работ по физике в этот период). Описание этого опыта приведено в Приложении 3. Результаты эксперимента показали, что 1 % нейтронов, испускаемых при делении урана, запаздывает по меньшей мере на 0,01 секунды и что около 0,7 % запаздывают даже на целую минуту. Проектируя котел так, чтобы эффективное значение коэффициента размножения k было равно только 1,01, можно получить достаточное число запаздывающих нейтронов, чтобы добиться легкого управления.

 



Поделиться:


Последнее изменение этой страницы: 2021-12-07; просмотров: 48; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.222.118.159 (0.006 с.)