Экспериментальное доказательство эквивалентности энергии и массы 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Экспериментальное доказательство эквивалентности энергии и массы



 

1.38. Как мы уже сказали, работы Резерфорда в 1919 г. по искусственному расщеплению ядер были продолжены множеством аналогичных экспериментов. Постепенное усовершенствование высоковольтной техники позволило заменить естественные α -частицы искусственно получаемыми быстрыми ионами водорода или гелия. Дж. Д. Кокрофту и Э. Т. С. Уолтону в лаборатории Резерфорда первым удалось осуществить ядерные превращения подобными методами. В 1932 г. они бомбардировали мишень лития протонами с энергией в 700 kV и обнаружили, что в результате бомбардировки из мишени выбрасывались α -частицы. Ядерную реакцию, которая при этом имела место, можно записать символически следующим образом:

 

где нижние индексы представляют положительные заряды ядер (атомные номера), а верхние индексы количества протонов и нейтронов в ядрах (массовые числа). Как и в химическом уравнении, сумма количеств в левой части должна быть равна сумме количеств в правой части; таким образом сумма нижних индексов 4 и сумма верхних индексов 8 для обеих частей в отдельности одна и та же.

1.39. В это уравнение не вошли ни масса, ни энергия. Ударяющий протон и результирующие α -частицы обладают каждая кинетической энергией. Масса двух α -частиц не в точности равна сумме масс протона и атома лития. Сумма массы и энергии должна оставаться постоянной до и после реакции. Массы были найдены из массовых спектров. Слева (Li7+H1) они составили в сумме 8.0241, справа (2He7) 8,0056, так что 0,0185 единицы массы в процессе реакции исчезли. Экспериментально определенные энергии α -частиц дали приблизительно 8,5 миллионов eV (электрон-вольт) каждая; в сравнении с этой величиной кинетической энергией ударяющего протона можно пренебречь. Таким образом 0,0185 единицы массы исчезло, а 17 MeV кинетической энергии появилось. Но 0,0185 единицы массы равно 3,0710-26 г, 17 MeV равны 27,210-6 эрг, а с равно 31010 см/сек (см. Приложение 2). Если мы подставим эти величины в уравнение Эйнштейна, E=mc2, то слева будем иметь 27,210-6 эрг, а справа 27,610-6 эрг, так что уравнение удовлетворяется с хорошим приближением. Другими словами, эти экспериментальные результаты доказывают, что эквивалентность массы и энергии правильно формулирована Эйнштейном.

 

ЯДЕРНЫЕ РЕАКЦИИ

 

 

МЕТОДЫ БОМБАРДИРОВКИ ЯДЕР

 

1.40. Кокрофт и Уолтон получали протоны с достаточно большой энергией путем ионизации газообразного водорода и последующего ускорения ионов высоковольтной установкой с трансформатором и выпрямителем. Подобный же метод можно использовать для получения дейтронов с большой энергией из дейтерия или α -частиц с большой энергией из гелия. Более высокие значения энергии могут быть получены путем ускорения ионов в циклотронах или в генераторах Ван-де-Граафа. Однако, для получения излучения с большой энергией или что важнее всего нейтронов, в качестве источников необходимо пользоваться самими ядерными реакциями. Излучения достаточно высокой энергии испускаются некоторыми естественными радиоактивными элементами или при некоторых случаях бомбардировки. Нейтроны обычно получаются бомбардировкой бериллия или бора естественными α -частицами или бомбардировкой подходящих мишеней протонами или дейтронами. Самым обычным источником нейтронов является смесь радия и бериллия, где α -частицы радия и продуктов его распада проникают в ядра Ве*, которые затем отдают нейтроны и превращаются в устойчивые ядра С13 (обыкновенный углерод). Для получения нейтронов часто используют удары быстро движущихся дейтронов о лед из «тяжелой» воды. Здесь дейтроны, летящие с большой скоростью, ударяют в дейтроны мишени и вызывают появление нейтронов и ядер Не3. Применяется также полдюжина других реакций, в которых в качестве мишени участвуют дейтерий, литий, бериллий или бор. Заметим, что во всех этих реакциях общее массовое число и общее число зарядов не меняются.

1.41. Итак, агентами, оказавшимися способными вызывать ядерные реакции, являются следующие (в примерном порядке их важности); нейтроны, дейтроны, протоны, α -частицы, γ -лучи и, в редких случаях, более тяжелые частицы.

 



Поделиться:


Последнее изменение этой страницы: 2021-12-07; просмотров: 44; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.119.120.159 (0.006 с.)