Ионизация радиоактивными веществами 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Ионизация радиоактивными веществами



 

1.7. Первым из наблюдавшихся явлений радиоактивности было явление почернения фотографической пластинки под действием минералов, содержащих уран. Хотя до некоторой степени еще и сейчас пользуются этим свойством при исследовании радиоактивности, наибольшее научное значение имеет способность радиоактивных веществ ионизовать газы. Воздух и другие газы в нормальных условиях не проводят электричества иначе невозможно было бы эксплоатировать линии электропередачи и электрические машины на открытом воздухе. Однако, при некоторых условиях молекулы воздуха распадаются на положительно и отрицательно заряженные частицы, называемые ионами. Ионизованный таким образом воздух становится проводником электричества. Через несколько месяцев после первого открытия радиоактивности Беккерель обнаружил способность урана ионизовать воздух. В частности, он нашел, что заряд электроскопа очень быстро исчезает, вследствие ионизации воздуха, если вблизи электроскопа поместить какую-нибудь из солей урана. (То же самое произойдет с зарядом аккумулятора, если близко к нему поднести достаточное количество радиоактивного вещества). С того времени скорость разрядки электроскопа всегда служит мерой интенсивности радиоактивности. Более того, почти все современные приборы для изучения явлений радиоактивности прямо или косвенно основаны на ионизационном эффекте. Элементарное описание подобных приборов электроскопов, счетчиков Гейгера-Мюллера, ионизационных камер и камер Вильсона приведено в Приложении 1.

 

РАЗЛИЧНЫЕ ИЗЛУЧЕНИЯ И ЧАСТИЦЫ

 

1.8. На различия в природе «излучений» указывает тот факт, что ионизующая способность разных радиоактивных веществ различна как по своему характеру, так и по интенсивности. Некоторые излучения обладают значительно большей проникающей способностью. чем другие; следовательно, два радиоактивные образца, оказывающие одинаковое действие на неэкранированный электроскоп, могут совершенно по разному действовать на электроскоп, если он экранирован, т. е. если между электроскопом и образцом помещены экраны.

1.9. Изучение поглощения и других явлений показало, что радиоактивные вещества испускают три типа «излучений»: α -частицы, являющиеся очень быстрыми ионизованными атомами гелия (ядрами атомов гелия), β -частицы, являющиеся очень быстро движущимися электронами, и γ -лучи, представляющие собою электромагнитное излучение, подобное рентгеновским лучам. Из всех этих излучений лишь γ -лучи правильно называть излучением, но даже они со своему действию весьма напоминают частицы, благодаря своей малой длине волны. Такая «частица», или квант γ -излучения, называется фотоном, γ -лучи обладают весьма большой проникающей способностью, α - и β -лучи меньшей. Но даже несмотря на то, что α - и β -лучи обладают не очень большой проникающей способностью, кинетическая энергия их для частиц атомных размеров огромна она в тысячи раз превосходит кинетическую энергию газовых молекул, которую они имеют благодаря тепловому движению, и в тысячи раз больше, чем изменения энергии на один атом в химических реакциях. Именно по этой причине Эйнштейн предположил, что изучение радиоактивности сможет доказать эквивалентность массы и энергии.

 

АТОМ

 

1.10. Прежде чем рассматривать вопрос о том, какие атомы испускают α -, β - и γ -лучи, и обсуждать законы, управляющие этим испусканием, мы изложим общепринятые представления о строении атомов, частично основанные на изучении радиоактивности.

1.11. Согласно нашим современным взглядам, каждый атом состоит из небольшого тяжелого ядра с диаметром, примерно в 10-12 см, окруженного большой пустой областью с диаметром 10-8 см, в которой, в некоторой степени подобно планетам вокруг солнца, движутся электроны. Ядро несет целое число положительных зарядов, каждый из которых равен 1.610-19 кулонов. (Единицы см. в Приложении 2). Каждый электрон несет один отрицательный заряд такой же величины, а число электронов, обращающихся вокруг ядра, равно числу положительных зарядов ядра, так что заряд атома в целом равен нулю.

1.12. Атомный номер и электронная структура. Число положительных зарядов ядра называется атомным номером X. Он определяет число электронов во внеядерной структуре атома, которое, в свою очередь, определяет его химические свойства. Таким образом все атомы данного химического элемента имеют один и тот же атомный номер, и обратно, все атомы, имеющие одинаковые атомные номера, являются атомами одного и того же элемента, независимо от возможных различий в строении их ядер. Внеядерные электроны атома располагаются последовательными оболочками, согласно твердо установленным законам. Оптические спектры возникают вследствие возмущений в наружных частях этой электронной структуры; рентгеновские лучи возникают в результате возмущений электронов оболочек, близких к ядру. Химические свойства атома зависят от наиболее удаленных от ядра электронов, и образование химических соединений сопровождается незначительными перегруппировками этих электронных структур. Отсюда следует, что когда при окислении, горении, взрыве или каком-либо другом химическом процессе выделяется энергия, она выделяется за счет этих структур, так что группировка электронов в атомах, образовавшихся в результате реакции, должна иметь меньшую энергию. (Предполагают, что общая масса этих продуктов соответственно меньше, но обнаружить это пока невозможно). Атомные ядра не испытывают изменений при обычных химических реакциях.

1.13. Массовое число. Не только положительный заряд ядра всегда выражается целым числом, равным числу электронных зарядов, но и масса ядра всегда приближенно равна целому кратному основной единицы массы, почти равной массе протона ядра атома водорода (см. Приложение 2). Это целое число называют массовым числом А; оно всегда по меньшей мере вдвое больше атомного номера; исключение составляет водород и редкий изотоп гелия. Так как масса протона примерно в 1800 раз больше массы электрона, то масса ядра почти равна массе всего атома.

1.14. Изотопы и изобары. Атомы, имеющие один и тот же атомный номер, но разные массовые числа, называются изотопами. Химически они тождественны, будучи лишь разновидностями одного и того же химического элемента. Атомы, имеющие одинаковые массовые числа, но разные атомные номера, называются изобарами и представляют собою различные химические элементы.

 



Поделиться:


Последнее изменение этой страницы: 2021-12-07; просмотров: 42; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.52.86 (0.008 с.)