Ограничение и обобщение понятия

 

Из предыдущего параграфа помимо всего прочего мы узнали о том, что в отношении подчинения участвуют понятия с меньшим объемом, называемые видовыми, и понятия с большим объемом, которые называются родовыми, причем объем видового понятия всегда полностью включается в объем родового. Видовые и родовые понятия тесно связаны между собой логическими операциями ограничения и обобщения.

Ограничение понятия– это логическая операция перехода от родового понятия к видовому с помощью прибавления к его содержанию какого-либо признака. Вспомним об обратном отношении между объемом и содержанием понятия: чем больше объем, тем меньше содержание, и наоборот. Ограничение понятия или переход от родового понятия к видовому – это уменьшение его объема, а значит – увеличение содержания. Вот почему при добавлении каких-то признаков к содержанию понятия автоматически уменьшается его объем. Например, если к содержанию понятия физический прибор прибавить признак «измерять напряжение электрического тока», то оно превратится в понятие вольтметр, которое будет видовым по отношению к исходному родовому понятию физический прибор:

 

 

Так же, если к содержанию понятия геометрическая фигура прибавить признак «иметь равные стороны и прямые углы», то оно превратится в понятие квадрат, которое будет видовым по отношению к исходному родовому понятию геометрическая фигура:

 

Обобщение понятия– это логическая операция, которая противоположна ограничению и представляет собой переход от видового понятия к родовому с помощью отбрасывания от его содержания какого-либо признака. (Понятно, что содержание понятия, лишенного каких-то признаков, уменьшается, но при этом автоматически увеличивается объем понятия, которое из видового становится родовым или обобщается.) Например, если от содержания понятия биология отбросить признак «изучать различные формы жизни», то оно превратится в понятие наука, которое будет родовым по отношению к исходному видовому понятию биология:

 

 

Так же, если от содержания понятия атом водорода отбросить признак «иметь один электрон», то оно превратится в понятие атом химического элемента, которое будет родовым по отношению к исходному видовому понятию атом водорода:

 

 

Ограничения и обобщения понятий складываются в логические цепочки, в которых каждое понятие (за исключением начального и конечного) является видовым по отношению к одному соседнему понятию и родовым по отношению к другому. Например, если последовательно обобщать понятие Солнце, то получится следующая цепочка:

Солнце ® звезда ® небесное тело ® физическое тело ® форма материи.

 

В этой цепочке, как видим, понятие звезда является родовым по отношению к понятию Солнце, но видовым по отношению к понятию небесное тело; так же понятие небесное тело является родовым по отношению к понятию звезда, но видовым по отношению к понятию физическое тело и т.д. Понятно, что движение по нашей цепочке от понятия Солнце к понятию форма материи представляет собой серию последовательных обобщений, а движение в обратном направлении – ограничений. (Если изобразить отношения между понятиями из указанной цепочки на схеме Эйлера, то получатся круги, последовательно располагающиеся один в другом: самый маленький обозначает понятие Солнце, а самый большой – форма материи.)



Пределом цепочки ограничения любого понятия всегда будет какое-либо единичное понятие (о том, что такое единичные понятия шла речь в первом параграфе), а пределом цепочки обобщения, как правило, будет какое-либо очень широкое, философское понятие (например, объект мироздания, форма материи или форма бытия).

Наиболее частые ошибки, которые допускают при ограничении и обобщении понятий, заключаются в том, что вместо вида для какого-то рода называют часть из некоего целого и вместо рода для какого-то вида называют целое по отношению к какой-либо части. Например, в качестве ограничения понятия цветок предлагают понятие стебель. Стебель, конечно же, является частью цветка, но ограничить понятие – это значит подобрать не часть для целого, а вид для рода, то есть правильным ограничением понятия цветок будет понятие ромашка или тюльпан, или хризантема и т.п. Так же, например, в качестве обобщения понятия дерево нередко предлагают понятие лес. Конечно же, лес является неким целым по отношению к деревьям, из которых он состоит, но обобщить понятие – это значит подобрать не целое для части, а род для вида, то есть правильным обобщением понятия дерево будет понятие растение или объект флоры, или живой организм и т.п.

Итак, почти любое понятие можно как ограничить, так и обобщить. Это значит подобрать для него как видовое понятие, так и родовое. Например, ограничением понятия человек будет понятие спортсмен (или писатель, или мужчина, или молодой человек и т.п.), а его обобщением будет понятие живое существо:

 

 

Выше было сказано, что ограничить и обобщить можно почти любое понятие. Правильнее было бы утверждать, что подавляющее большинство понятий можно подвергнуть логическим операциям ограничения и обобщения. Какие же понятия невозможно ограничить и обобщить? О них уже шла речь в данном параграфе. Это единичные понятия и очень широкие философские понятия, которые являются пределами любых ограничений и обобщений соответственно.

 

Определение понятия

 

Мы часто сталкиваемся с такими выражениями, как «начнем с определения...», «дайте определение...», «запомните определение...», «это неверное определение...» и т.п. Что же такое определение? Давайте дадим определение определению.

В обыденном смысле определение – это ответ на вопрос, что собой представляет какой-то объект, свойство, явление. Если говорить более точно и научно, то определение понятия– это логическая операция, которая раскрывает его содержание.

Определения бывают явными и неявными. Явное определениеставит своей целью непосредственное раскрытие содержания некого понятия, прямой ответ на вопрос, чем является объект, который оно обозначает. Например, определение: Термометр – это физический прибор, предназначенный для измерения температуры – явное. Неявное определениераскрывает содержание понятия не прямо, а косвенно, с помощью того контекста, в котором это понятие употребляется. Например, из следующей фразы: Во время этого грандиозного эксперимента сверхточные термометры зафиксировали температуру в 1000°С косвенно следует ответ на вопрос, что такое термометр, вытекает неявное определение этого понятия. Неявные определения называются также контекстуальными.Понятно, что определениями в полном смысле этого слова надо считать явные определения. В дальнейшем речь пойдет именно о них.

Определения также бывают реальными и номинальными. Реальноеопределение раскрывает содержание понятия, обозначающего какой-то объект, а номинальное(от лат. nomen – имя) раскрывает значение термина, в котором выражено какое-либо понятие. Говоря проще, реальные определения посвящены объектам, а номинальные – терминам (словам). Например, определение: Термометр – это физический прибор, предназначенный для измерения температуры, – реальное, а определение: Слово «термометр» обозначает физический прибор, предназначенный для измерения температуры, – номинальное. Как видим, принципиальной разницы между реальными и номинальными определениями не существует. Они различаются, как правило, по форме, но не по сути.

Существует несколько способов определения понятия, но среди них выделяется классический способ, который заключается в том, что определяемое понятие подводится под ближайшее к нему родовое понятие, после чего следует указание на его видовое отличие. Например, определение: Астрономия это наука о небесных телах построено по классическому способу. В нем определяемое понятие астрономия сначала подводится под ближайшее к нему родовое понятие наука (астрономия – это обязательно наука, но наука – это не обязательно астрономия), а потом указывается на видовое отличие астрономии от других наук (...о небесных телах).

Пользуясь классическим способом, вы сможете дать точное и правильное определение любому понятию (если, конечно же, определяемый объект или термин вам хорошо знаком, и вы знаете, что он собой представляет или что означает соответственно). Например, нам требуется дать определение понятию квадрат. Следуя классическому способу, сначала подведем его под родовое понятие: квадрат – это геометрическая фигура..., а затем укажем на его видовое отличие от других геометрических фигур, которое заключается в наличии равных сторон и прямых углов. Итак, квадрат это геометрическая фигура, у которой все стороны равны и углы прямые. (Давая определение понятию квадрат, мы могли бы подвести его под более близкое родовое понятие прямоугольник, и тогда определение получилось быследующим: Квадрат это прямоугольник, у которого все стороны равны, однако и приведенное выше определение квадрата раскрывает содержание соответствующего понятия и является верным.) Обратите внимание на то, что фактически все определения, встречающиеся в научной, учебной и справочной литературе (в толковых словарях, например) построены по классическому способу.

 

Логические правила определения

 

Существует несколько логических правил определения. Нарушение хотя бы одного из них приводит к тому, что содержание понятия не раскрывается и определение не достигает своей цели, являясь неверным. Рассмотрим эти правила и ошибки, возникающие при их нарушении.

1.Определение не должно быть широким, то есть определение не должно превышать своим объемом определяемое понятие. Например, определение: Солнце – это небесное тело является широким: определение – небесное тело – по объему намного больше определяемого понятия – Солнце. Из приведенного в качестве примера определения далеко не вполне понятно, что такое Солнце, ведь небесное тело – это и любая планета, и любая галактика и т.д. и т.п. В данном случае можно также сказать, что пользуясь классическим способом определения, мы подвели определяемое понятие Солнце под родовое понятие небесное тело, но не сделали второй шаг – не указали на его видовое отличие.

2. Определение не должно быть узким, то есть определение не должно быть по своему объему меньше определяемого понятия. Например, определение: Геометрия – это наука о треугольниках является узким. Геометрия действительно наука о треугольниках, но не только о них, а в нашем примере она сведена только к треугольникам, то есть определение получилось по объему меньше определяемого понятия, в результате чего из приведенного определения не совсем понятно, что такое геометрия, содержание понятия в данном случае не раскрывается.

Как видим, ошибка узкого определения противоположна ошибке широкого определения. Если определение не должно быть широким и не должно быть узким, то каким же тогда оно должно быть? Оно должно быть соразмерным, то есть определяемое понятие и определение должны быть равны друг другу. Вернемся к определению: Астрономия – это наука о небесных телах, которое является соразмерным. В этом примере определяемое понятие астрономия и определение наука о небесных телах находятся в отношении равнозначности (астрономия – это именно наука о небесных телах, а наука о небесных телах – это только астрономия). Определение является соразмерным тогда, когда между его первой частью (определяемым понятием) и второй (определением) можно поставить знак равенства или тождества. Если же вместо этого между первой и второй частью определения ставится знак «больше» или «меньше», то оно является ошибочным – широким или узким соответственно. В данном случае мы видим проявление одного из основных законов логики – закона тождества, который упоминался во введении к этой книге.

3. В определениине должно быть круга,то есть в определении нельзя употреблять понятия, которые являются определяемыми. Например, в определении: Клеветник это человек, который занимается клеветой присутствует круг, поскольку понятие клеветник определяется через понятие клевета, то есть фактически – через самое себя. (Если бы, выслушав приведенное только что определение, мы спросили бы, что такое клевета, нам вполне могли бы ответить, что клевета это то, чем занимается клеветник.) Присутствующий в определении круг (или, по-гречески, тавтолоηгия – повтор) приводит к тому, что содержание понятия не раскрывается и определение является ошибочным. Только на первый взгляд круг в определении может не показаться ошибкой. Наверняка найдутся люди, которые скажут, что из определения: Клеветник – это человек, который занимается клеветой вполне понятно и кто такой клеветник, и что такое клевета. Однако они могут так утверждать только потому, что им ранее было известно значение терминов клеветник и клевета. Станет ли понятно, что такое экзистенциализм из следующего кругового определения: Экзистенциализм это философское направление XX в., в котором ставятся и всесторонне рассматриваются различные экзистенциальные вопросы и проблемы! Узнаем ли мы, что такое синергетика, благодаря такому круговому определению: Синергетика – это раздел современного естествознания, который изучает разнообразные синергетические явления и процессы?

4. Определение не должно быть двусмысленным,то есть в нем нельзя употреблять термины в переносном значении. Вспомним всем хорошо знакомое с детства определение: Лев – это царь зверей. В данном определении термин царь используется в переносном смысле, но, кроме этого, у него есть еще и прямой смысл. Получается, что в определении употребляется один термин, а возможных смыслов у него два, то есть определение является двусмысленным (вновь нарушается логический закон тождества: одно слово, два смысла – 1 ¹2). Двусмысленность вполне уместна в качестве художественного приема, но в определении она недопустима, поскольку содержание понятия в данном случае не раскрывается.

5. Определение не должно быть сложным и непонятным. Рассмотрим следующее определение: Энтропия это термодинамическая функция, характеризующая часть внутренней энергии замкнутой системы, которая не может быть преобразована в механическую работу. Это определение взято не из научного доклада и не из докторской диссертации, а из учебника для студентов гуманитарных специальностей «Концепции современного естествознания». Данное определение не широкое и не узкое, в нем нет круга и двусмысленности, оно верно и с научной точки зрения. Это определение кажется безупречным за тем только исключением, что оно является сложным и непонятнымдля людей, которые не занимаются специально естественными науками, то есть для большинства людей. Определение должно быть понятным для того, кому оно адресовано, иначе при всей своей формальной правильности оно не будет раскрывать содержания понятия для своего адресата. Непонятные определения также называют некоммуникабельными, то есть создающими преграды для общения между людьми.

6. Определение не должно быть только отрицательным. Например, определение: Квадрат – это не треугольник является только отрицательным. Квадрат – это действительно не треугольник, но данное определение не раскрывает содержание понятия квадрат, ведь, указав на то, чем не является объект, обозначенный определяемым понятием, мы не указали на то, чем он является (окружность, трапеция, пятиугольник и т.п. – это тоже не квадрат). Определение может быть отрицательным в том случае, когда оно дополнено положительной частью. Например, определение: Квадрат – это не треугольник, а прямоугольник, у которого все стороны равны – правильное. Важно, чтобы определение не было только отрицательным.

Итак, основные ошибки, возникающие при нарушении правил определения понятия – это широкое определение, узкое определение, круг в определении, двусмысленное определение, сложное и непонятное определение, только отрицательное определение. Наша задача – не допускать этих ошибок и уметь находить их в различных встречающихся нам определениях.

 

Деление понятия

 

Если определение понятия раскрывает его содержание, то деление понятия – это логическая операция, которая раскрывает его объем.

Деление понятия состоит из трех частей: 1) делимое понятие; 2) результаты деления; 3) основание деления (признак, по которому производится деление). Например, в следующем делении: Люди бывают мужчинами и женщинами (или, что то же самое: Люди делятся на мужчин и женщин) делимым является понятие люди, результаты деления – это понятия мужчины и женщины, а основание данного деления – пол, так как люди в нем разделены по половому признаку.

В зависимости от основания деление может быть различным. Например: Люди бывают высокими, низкими и среднего роста (основание деления – рост); Люди бывают монголоидами, европеоидами и негроидами (основание деления – раса); Люди бывают учителями, врачами, инженерами и т.д. (основание деления – профессия). Иногда понятие делится дихотомически, то есть, в переводе с греческого – пополам, по типу А и не-А, например: Люди бывают спортсменами и не спортсменами. Дихотомическое деление всегда правильное, то есть в нем автоматически исключаются все возможные в делении ошибки, о которых речь пойдет далее.

Мы хорошо знаем, зачем нам нужна операция определения понятия: любое знакомство с каким-либо новым предметом начинается с определения. Теперь ответим на вопрос, какую роль в мышлении и языке выполняет операция деления понятия. Изучая разные науки, вы заметили, что ни одна из них не обходится без различных классификаций, то есть разделений каких-то областей действительности на группы, части, виды и т.п. (классификация растений в ботанике, животных – в зоологии, химических элементов – в химии и т.д.). Однако любая классификация – это не что иное, как логическая операция деления понятия. Только классификации могут быть обширными, подробными, научными, но также могут быть простыми, обыденными, повседневными. Когда мы говорим: Люди делятся на мужчин и женщин или Учебные заведения бывают начальными, средними и высшими, то в этом случае уже создаем пусть маленькую и простую, но классификацию. Итак, логическая операция деления понятия лежит в основе любой классификации, без которой не обходится ни научное, ни повседневное мышление.

 

Логические правила деления

 

Существует несколько логических правил деления. Нарушение хотя бы одного из них приводит к тому, что объем понятия не раскрывается и деление не достигает своей цели, являясь неверным. Рассмотрим эти правила и ошибки, возникающие при их нарушении.

1.Деление должно проводиться по одному основанию, то есть при делении понятия следует придерживаться только одного выбранного признака. Например, в делении: Люди бывают мужчинами, женщинами и учителями используются два разных основания – пол и профессия, что недопустимо. Ошибка, возникающая при нарушении этого правила, называется подменой основания. В делении с подменой основания может использоваться не только два разных основания, как в приведенном выше примере, но и больше. Например, в делении: Люди бывают мужчинами, женщинами, китайцами и блондинами, как видим, используются три различных основания – пол, национальность и цвет волос, что конечно же тоже является ошибкой.

2. Деление должно быть полным, то есть надо перечислить все возможные результаты деления (суммарный объем всех результатов деления должен быть равен объему исходного делимого понятия). Например, деление: Учебные заведения бывают начальными и средними является неполным, так как не указан еще один результат деления – высшие учебные заведения. Но как быть, если надо перечислять не два или три, а десятки или сотни результатов деления. В этом случае можно употреблять понятия: и другие, и прочие, и так далее, и тому подобное, которые будут включать в себя неперечисленные результаты деления. Например: Люди бывают русскими, немцами, китайцами, японцами и представителями других национальностей.

3. Результаты деления не должны пересекаться, то есть понятиям, представляющим собой результаты деления, следует быть несовместимыми, их объемы не должны иметь общих элементов (на схеме Эйлера круги, обозначающие результаты деления, не должны соприкасаться, располагаясь отдельно друг от друга). Например, в делении: Страны мира делятся на северные, южные, восточные и западные допущена ошибка – пересечение результатов деления. Напервый взгляд приведенное в качестве примера деление кажется безошибочным: оно проведено по одному основанию (сторона света) и является полным (все стороны света перечислены). Чтобы увидеть ошибку в данном делении, надо рассуждать так. Возьмем какую-нибудь страну, например Канаду, и ответим на вопрос – является ли она северной? Конечно, является, так как расположена в Северном полушарии Земли. Теперь ответим на вопрос, является ли Канада западной страной? Да, потому что она расположена в Западном полушарии Земли. Таким образом, получается, что Канада – одновременно и северная, и западная страна, то есть она является общим элементом объемов понятий северные страны и западные страны, а значит, эти понятия пересекаются. То же самое можно сказать и относительно понятий южные страны и восточные страны. На схеме Эйлера результаты деления из нашего примера будут располагаться так:

 

 

Вспомним, каждая классификация построена таким образом, что любой элемент, попадающий в одну ее группу (часть, вид), ни в коем случае не попадает в другие. Это и есть следствие непересечения результатов деления или их взаимоисключения при составлении какой угодно классификации.

4. Деление должно быть последовательным,то есть не допускающим пропусков и скачков. Рассмотрим следующее деление: Леса бывают хвойными, лиственными, смешанными и сосновыми. Явно лишним здесь выглядит понятие сосновые леса, в силу чего допущенная в делении ошибка напоминает подмену основания (см. первое правило). Однако основание в данном случае не менялось: деление было проведено по одному и тому же основанию – тип древесных листьев. Подмена основания присутствует в таком, например, делении: Леса бывают хвойными, лиственными, смешанными, подмосковными и таежными. (Деление проведено по двум разным основаниям – тип древесных листьев и географическое местонахождение леса.) Вернемся к нашему первому примеру. Правильно было бы разделить леса на хвойные, лиственные и смешанные, а потом произвести второе деление – разделить хвойные леса на сосновые и еловые. Таким образом, надо было совершить два последовательных деления, а в приведенном примере второе деление пропущено, через него как бы перескочили, в результате чего два деления смешались в одно. Такая ошибка называется скачком в делении.Еще раз отметим, что скачок в делении не следует путать с подменой основания. Например, в делении: Учебные заведения бывают начальными, средними, высшими и университетами присутствует скачок, а в делении: Учебные заведения бывают начальными, средними, высшими и коммерческими допущена подмена основания.

Итак, основные ошибки, возникающие при нарушении правил деления понятия – это подмена основания, неполное деление, пересечение результатов деления и скачок в делении. Наша задача – правильно производить деление понятия, не допускать ошибок и уметь находить их в различных встречающихся нам делениях и классификациях.

 









Последнее изменение этой страницы: 2016-04-08; Нарушение авторского права страницы

infopedia.su не принадлежат авторские права, размещенных материалов. Все права принадлежать их авторам. Обратная связь