Внутрисекреторная функция и значение плаценты, эпифиза, видочкоыой железы 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Внутрисекреторная функция и значение плаценты, эпифиза, видочкоыой железы



Эпифиз находится над верхними буграми четверохолмия. Значение эпифиза крайне противоречиво. Из его ткани выделены два соединения:

1) мелатонин (принимает участие в регуляции пигментного обмена, тормозит развитие половых функций у молодых и действие гонадотропных гормонов у взрослых). Это обусловлено прямым действием мелатонина на гипоталамус, где идет блокада освобождения люлиберина, и на переднюю долю гипофиза, где он уменьшает действие люлиберина на освобождение лютропина;

2) гломерулотропин (стимулирует секрецию альдостерона корковым слоем надпочечников).

Тимус (вилочковая железа) – парный дольчатый орган, расположенный в верхнем отделе переднего средостения. Тимус образует несколько гормонов: тимозин, гомеостатический тимусный гормон, тимопоэтин I, II, тимусный гуморальный фактор. Они играют важную роль в развитии иммунологических защитных реакций организма, стимулируя образование антител. Тимус контролирует развитие и распределение лимфоцитов. Секреция гормонов тимуса регулируется передней долей гипофиза.

Вилочковая железа достигает максимального развития в детском возрасте. После полового созревания она начинает атрофироваться (железа стимулирует рост организма и тормозит развитие половой системы). Есть предположение, что тимус влияет на обмен ионов Ca и нуклеиновых кислот.

При увеличении вилочковой железы у детей возникает тимико-лимфатический статус. При этом состоянии, кроме увеличения тимуса, происходят разрастание лимфатической ткани, увеличение вилочковой железы является проявлением надпочечниковой недостаточности.

Эндокринная функция плаценты.

По мере формирования плаценты она берет на себя гормональное обеспечение развития зародыша. Если на первых этапах беременности гипофизэктомия приводит к прерыванию беременности, то сформированная плацента уже

становится независимым источником образования высоких концентраций прогестерона и эстрогенов, хорионического гонадотропина, а также определенного количества андрогенов. Установлено, что эстрогены в комбинации с прогестероном подавляют иммунные реакции между плодом и плацентой, подавляют трансплантационный иммунитет и способствуют развитию трофобласта и превращению его в плаценту.

Плацента синтезирует множество гормонов и других биологически активных веществ, имеющих важное значение для нормального течения беременности (обеспечивают повышение резистентности организма женщины в период беременности) и нормальное развития плода, включающее реализацию генетически детерминированных программ эмбриогенеза, соматического и функционального развития.

С биохимической точки зрения эти гормоны можно разделить на 2 группы:

а) Стероидные гормоны

· Прогестерон

· Эстрон

· Эстрадиол

· Эстриол

Их действие было рассмотрено выше.

б) Пептидные гормоны:

· Хорионический гонадотропин

· Плацентарный аналог гормона роста

· Плацентарные лактогены (хорионические гонадотропины)

· Тиротропин (ТТГ), Тиролиберин (ТТГ–РГ),

· Кортиколиберин (АКТГ–РГ),

· Гонадолиберин,

· Соматолиберин

· Соматостатин

· Вещество Р

· Аналог АКТГ

· Ингибины

Характерно, что в крови плода содержание прогестерона примерно в 5 раз выше такового в крови матери.

Весьма вероятно, что именно прогестерон, защищая зародыш от чрезмерного действия эстрогенов, способствует дифференцировке половой системы. В крови плода присутствует только малоактивный эстриол, в то время как активные гормоны — эстрадиол и эстрон— не определяются у зародышей. Следовательно, зародыш обладает такими энзимными системами, которые способны защитить от действия чрезмерных колебаний половых гормонов

Андрогены выполняют роль своеобразного противовеса эстрогенов. Прогестерон, эстрогены и андрогены сбалансированы в таких пропорциях, когда андрогены препятствуют феминизирующему действию эстрогенов на генитальный

тракт зародыша мужского пола, а эстрогены в свою очередь блокируют маскулинизирующее действие андрогенов на репродуктивную систему эмбрионов женского пола.

Хорионический гонадотропин (ХГТ). Он запускает продукцию гормонов собственно в организме плода и регулирует оптимальное функционирование эндокринных органов в материнском организме. По механизму действия ХГТ близок лютеотропину гипофиза.

Плацентарный лактоген появляется в крови плода уже на 6 неделе. Он синтезируется во все возрастающих количествах — общее количество за сутки возрастает от 0,5 до 5 граммов. Гормон из плаценты поступает как в кровь плода, так и в кровь матери. По механизму действия плацентарный лактоген соответствует соматотропину и маммотропину гипофиза. Поэтому в организме плода этот гормон стимулирует метаболические процессы, вызывая общий рост. При его недостаточности развивается гипотрофия плода и перинатальная смерть. Плацентарный лактоген имеет маммотропное влияние на молочную железу, как матери, так и ребенка. Избыток этого гормона приводит к выделению грудного молока новорожденным — т.н. молоко «ведьмы».

Желтое тело и плацента секретируют и другие гормоны, среди них — релаксин (лат. relaxo — расширяю, расслабляю), вызывающий расширение симфиза и лобковых костей таза матери, что способствует акту родов.

К моменту рождения концентрация всех гомонов плаценты и плода резко увеличивается, подготавливая организм плода к критическому переходу из внутриутробного существования к жизни во внешней среде. После рождения происходит снижение продукции гормонов у ребенка, но в норме этот дефицит компенсируется женским грудным молоком, содержащим все необходимые гормоны.

Характеристика гормонов

Гормоны - органические вещества разнообразного строения, вырабатывающиеся в специализированных органах - железах внутренней секреции, поступающие с кровью в различные органы и оказывающие в них регулирующее влияние на метаболизм и физиологические функции. Синтезируются гормоны в ничтожно малых концентрациях (10-6 - 10-12 М).

В клетках органов, в которых реализуется действие гормонов («органы-мишени»), имеются особые белки, называемые рецепторами гормонов. Эти белки обладают способностью специфически связываться только с определенными гормонами, и поэтому органы-мишени избирательно извлекают из протекающей крови лишь те гормоны, которые необходимы данному органу для регуляции в нем обмена веществ. Такой механизм позволяет гормонам строго избирательно воздействовать на определенные органы. Рецепторные белки находятся либо внутри клеток, либо встроены в клеточную мембрану.

Для некоторых гормонов (например, для адреналина и глюкагона) таким рецептором является мембраносвязанный (встроенный в клеточную мембрану) фермент аденилатциклаза. Присоединение гормона к этомуферменту приводит к повышению его каталитической активности. Под действием активированной аденилатциклазы внутри клеток имеющийся там АТФ превращается в циклическую форму АМФ (цАМФ). Образовавшийся цАМФ непосредственно участвует в регуляции клеточного метаболизма.

В клетках органов-мишеней содержатся ферменты, разрушающие поступающие в них гормоны, что ограничивает действие гормонов во времени и предупреждает их накопление.

Чувствительность рецепторов и активность ферментов, расщепляющих гормоны, может меняться при нарушениях метаболизма, изменениях физико-химических параметров организма (температура, кислотность, осмотическое давление) и концентрации важнейших субстратов, возникающих при заболеваниях, а также при выполнении мышечной работы. Следствием этого является усиление или ослабление влияния гормонов на соответствующие органы.

Внутриклеточные механизмы действия гормонов разнообразны. Но все же можно выделить три главных механизма, присущих большинству гормонов:

1. Гормоны влияют на скорость синтеза ферментов, ускоряя или замедляя его. В результате такого воздействия в органах-мишенях повышается или снижается концентрация определенных ферментов, что сопровождается соответствующим изменением скорости ферментативных реакций.

2. Гормоны влияют на активность ферментов в этих органах. В одних случаях гормоны оказываются активаторами ферментов и поэтому повышают скорость ферментативных реакций. В других же случаях гормон проявляет ингибирующее действие на ферменты, что приводит к снижению скорости ферментативных реакций.

3.Гормоны влияют на проницаемость клеточных мембран по отношению к определенным химическим соединениям. В результате такого действия в клетки поступает больше или меньше субстратов для ферментативных реакций, что тоже обязательно сказывается на скорости химических процессов.

В конечном итоге все три основные механизмы действия гормонов направлены на регуляцию скорости химических реакций, протекающих в клетках, что, в свою очередь, оказывает влияние на физиологические функции.

По химическому строению гормоны можно разделить на 3 группы:

1. Гормоны белковой природы (белки и полипептиды): гормоны гипоталамуса, гормоны гипофиза, кальцитонин щитовидной железы, гормон паращитовидных желез, гормоны поджелудочной железы.

2. Гормоны - производные аминокислоты тирозина: йодсодержащие гормоны щитовидной железы, гормоны мозгового слоя надпочечников.

3. Гормоны стероидного строения: гормоны коры надпочечников, гормоны половых желез.

Синтез и выделение гормонов в кровь находятся под контролем нервной системы. В упрощенном виде взаимосвязь между гормональной (эндокринной) и нервной системами можно представить следующим образом. При воздействии на организм каких либо внешних факторов или же при возникновении изменений в крови и в различных органах соответствующая информация передается по афферентным (чувствительным) нервам в ЦНС. В ответ на полученную информацию в гипоталамусе (часть промежуточного мозга) вырабатываются биологически активные вещества (гормоны гипоталамуса), которые затем поступают в гипофиз (мозговой придаток) и стимулируют или тормозят в нем секрецию так называемых тропных гормонов (гормоны передней доли). Тропные гормоны выделяются из гипофиза в кровь, переносятся в железы внутренней секреции и вызывают в них синтез и секрецию соответствующих гормонов, которые далее воздействуют на органы-мишени. Таким образом, в организме имеется единая нервно-гормональная или нейро-гуморальная регуляция.

Все железы внутренней секреции функционируют согласованно и оказывают друг на друга взаимное влияние. Введение в организм гормонов сказывается не только на функции железы, вырабатывающей вводимый гормон, но и может оказать негативное воздействие на состояние всей нервно-гормональной регуляции в целом. Поэтому использование в качестве допингов гормональных препаратов является опасным для здоровья спортсменов.

Список гормонов Где вырабатываются Функции гормонов

Адреналин Надпочечники Гормон страха, вырабатывается в стрессовых и шоковых ситуациях, при угрозе для жизни, для защиты. Увеличивает силу

Адренокортикотропин Гипофиз Контролирует выработку гормонов надпочечников

Альдостерон Надпочечники Регуляция минерального обмена: увеличение концентрации натрия и уменьшение концентрации калия, повышение артериального давления

Андростендион Яичники Надпочечники Яички Гормон-предшественник более сильных андрогенов, преобразуется в эстрогены, тестостерон. Участие в половой дифференциации

Антимюллеров гормон (АМГ) Половые железы Формирование репродуктивной системы, сперматогенез, овуляция

Ваготонин Поджелудочная железа Повышение тонуса и усиление активности блуждающих нервов

Вазопрессин

(антидиуретический гормон) Гипоталамус Регуляция количества воды в организме

Витамин Д Кожа Активный стероидный мужской гормон, влияет на

Список гормонов Где вырабатываются Функции гормонов уровень тестостерона. Регулирует размножение клеток, обменных процессов, влияние на синтез других гормонов. Жиросжигатель, антиоксидант

Глюкагон Поджелудочная железа, слизистая оболочка желудка и кишечника Поддержание сахарного равновесия в крови, обеспечивает поступление глюкозы в кровь из гликогена

Гонадотропин хорионический Плацента Препятствует рассасыванию желтого тела, нормализует гормональный фон беременной

Гонадотропин-высвобождающий

гормон (гонадотропин-рилизинг

гормон) Передний отдел гипоталамуса Участвует в синтезе других половых гормонов, в росте фолликулов, регулирует овуляцию, поддерживает процесс формирования желтого тела у женщин, процессы сперматогенеза у мужчин

Гормон роста (соматотропин) Гипофиз Обеспечивает линейный рост у детей, регулирует обменные процессы

Дофамин (допамин) Головной мозг, надпочечники, поджелудочная железа Гормон удовольствия, регулирует двигательную активность, улучшает память, внимание, мышление, регулирует режим сна и бодрствования

Инсулин Поджелудочная железа Поддержание снижение уровня глюкозы в крови, оказывает влияние на другие процессы обмена веществ

Кортизол(гидрокортизон) Надпочечники Сохранение энергетического равновесия, активизирует распад глюкозы, запасает ее в виде гликогена в печени, как запасное вещество на случай стрессовых ситуаций

Кортизон Надпочечники Синтез углеводов из белков, угнетает лимфоидные органы (действие подобно кортизолу)

Кортикостерон Надпочечники Регуляция обменных процессов

Кортикотропин

(адренокортикотропный гормон,

АКТГ) Гипоталамо-гипофизарная область головного мозга Регуляция функций коры надпочечников

Лептин Белая жировая ткань, слизистая оболочка желудка, мышцы скелета, плацента, молочные железы Гормон насыщения, поддержание баланса между поступлением и расходом калорий, подавляет аппетит, передает информацию в гипоталамус о массе тела и жировом обмене

Липокаин Поджелудочная железа Предупреждает ожирение печени, способствует биосинтезу фосфолипидов

Лютеинизирующий гормон (ЛГ) Гипофиз У женщин воздействует на эстрогены, которые в свою очередь обеспечивают процесс созревания фолликулов и наступление овуляции. У мужчин влияет на секрецию тестостерона

Меланоцитостимулирующий гормон

(интермедин, меланотропин) Гипофиз Кожная пигментация

Мелатонин Эпифиз Регулирует суточные биоритмы, гормон сна

Норадреналин Надпочечники Гормон ярости, обеспечивает реакцию организма в случае опасности, увеличивает агрессивность,

Список гормонов Где вырабатываются Функции гормонов усиливает чувство ужаса и ненависти

Окситоцин Гипоталамус Родовая деятельность женщины, лактация, проявление чувства привязанности и доверия

Панкреозимин (ССК,

холецистокинин) Двенадцатиперстная и тощая кишка Стимуляция работы поджелудочной железы, влияет на пищеварение, вызывает чувство

Паратгормон (паратиреоидный

гормон, паратирин, ПТГ) Околощитовидная железа Уменьшает выведение из организма кальция, вывод с мочой фосфор, при дефиците кальция и фосфора в крови выводит их из костной ткани, при избытке кальция в крови откладывает его в костях

Прогестерон Желтое тело организма женщины Гормон беременности

Пролактин Гипофиз Развитие вторичных половых признаков, регулятор полового поведения, у женщин в период лактации предотвращает овуляцию, выработка грудного молока

Релаксин Яичники, желтое тело, плацента, маточные ткани Подготовка организма женщины к родам, формирование родового канала, расширяет кости таза, открывает шейку матки, снижает маточный тонус

Секретин Тонкая кишка, 12-перстная кишка, желудок Стимулирует работу поджелудочной железы, блокирует выработку соляной кислоты, регулирование водного гомеостаза

Серотонин Эпифиз, слизистая оболочка кишечника Создает ощущение счастья, улучшает психические процессы, способствует репродуктивной функции, улучшает сон, снижает ощущение боли

Тестостерон Семенники Основной мужской половой гормон, обеспечивает проявление вторичных половых признаков, отвечает за репродуктивную функцию

Тиреокальцитонин (кальцитонин) Щитовидная железа Обеспечивает нормальный уровень кальция, укрепляет костную ткань, способствует ее быстрой регенерации после травм, онкомаркер

Тиреотропин (тиротропин,

тиреотропный гормон) Гипофиз Регулирует деятельность щитовидной железы

Тироксин Щитовидная железа Обеспечивает правильный обмен веществ, влияет на работу нервной системы, улучшает работу сердца

Фолликуло-стимулирующий гормон

(ФСГ, фоллитропин,

пролай А) Гипофиз У женщин обеспечивает развитие и созревание фолликула и яйцеклетки. У мужчин способствует функционированию семенников, усиливает сперматогенез

Эстрадиол (Эстрогены) Половые железы и надпочечники У женщин: формирование вторичных половых признаков, обеспечение репродуктивной функции. У мужчин: улучшение физиологического состояния организма

Эстриол (Эстрогены) Половые железы и надпочечники В большом количестве вырабатывается во время беременности, является индикатором развития плода

Эстрон, фолликулин (Эстрогены) Половые железы и надпочечники Обеспечивает нормальное развитие женского

Список гормонов Где вырабатываются Функции гормонов организма, гормональный фон

Эндорфин Гипофиз, центральная нервная система, почки, пищеварительная система Подготовка организма к восприятию стрессовой ситуации, формирование стабильного положительного эмоционального фона

Физиология надпочечников

Надпочечники состоят из мозгового и коркового вещества, которое представляет собой разные по структуре и функциям железы внутренней секреции, выделяющие резко отличающиеся по своему действию гормоны.

Мозговое вещество надпочечников

Мозговое вещество надпочечников состоит из хромаффинных клеток. Они окрашиваются двухромовокислым калием в желто-коричневый цвет, что и послужило поводом назвать их хромаффинными.

Хромаффинные клетки встречаются не только в мозговом веществе надпочечников, но и в других участках тела: на аорте, у места разделения сонных артерий, среди клеток симпатических ганглиев малого таза, иногда в толще отдельных ганглиев симпатической цепочки. Все эти клетки относят к так называемой адреналовой системе, так как они вырабатывают адреналин и близкие к нему физиологически активные вещества.

Адреналин и норадреналин

Гормон мозгового слоя надпочечников – адреналин - представляет собой производное аминокислоты тирозина. Мозговой слой надпочечников секретирует также норадреналин, являющийся непосредственным предшественником адреналина при синтезе его в клетках хромаффинной ткани. Норадреналин представляет собой медиатор, выделяющийся окончаниями симпатических волокон. По химической структуре - это деметилированный адреналин; он оказывает физиологическое действие, близкое к последнему.

Адреналин и норадреналин объединяют под названием «катехоламины». Их называют также симпатомиметическими аминами, так как действие адреналина и норадреналина на органы и ткани сходно с действием симпатических нервов. Симпатомиметические амины разрушаются ферментами моноаминоксидазой и катехол-О-метилтрансферазой.

Адреналин оказывает влияние на многие функции организма, в том числе на внутриклеточные процессы обмена веществ. Он усиливаете расщепление гликогена и уменьшает запас его в мышцах и печени, являясь в этом отношении антагонистом инсулина, который усиливает синтез гликогена.

Под влиянием адреналина в мышцах усиливается гликогенолиз, сопровождающийся гликолизом и окислением пировиноградной и молочной кислот. В печени же из гликогена образуется глюкоза, которая затем переходит в кровь; вследствие этого количество глюкозы в крови увеличивается (адреналиновая гипергликемия). Таким образом, действие адреналина влёчет за собой, во-первых, использование гликогенного резерва мышц в качестве источника энергии для их работы, во-вторых, увеличенное поступление из печени в кровь глюкозы, которая также может быть использована мышцами при их активной деятельности.

Адреналин вызывает усиление и учащение сердечных сокращений, улучшает проведение возбуждения в сердце. Особенно резкое положительное хроно- и инотропное действие адреналин оказывает на сердце в тех случаях, когда сердечная мышца ослаблена. Адреналин суживает артериолы кожи, брюшных органов и тех скелетных мышц, которые находятся в покое. Адреналин не суживает сосуды работающих мышц.

Адреналин ослабляет сокращения желудка и тонкого кишечника. Перистальтические и маятникообразные сокращения уменьшаются или совсем прекращаются. Снижается тонус гладких мышц желудка и кишок. Бронхиальная мускулатура при действии адреналина расслабляется, вследствие чего просвет бронхов и бронхиол расширяется. Адреналин вызывает сокращение радиальной мышцы радужной оболочки, в результате чего зрачки расширяются. Введение адреналина повышает работоспособность скелетных мышц (особенно если до этого они были утомлены). Под влиянием адреналина повышается возбудимость рецепторов, в частности сетчатки глаза, слухового и вестибулярного аппарата. Это улучшает восприятие организмом внешних раздражений.

Таким образом, адреналин вызывает экстренную перестройку функций, направленную на улучшение взаимодействия организма с окружающей средой, повышение работоспособности в чрезвычайных условиях.

Действие норадреналина на функции организма сходно с действием адреналина, но не вполне одинаково. У человека норадреналин повышает периферическое сосудистое сопротивление, а также систолическое и диастолическое давление в большей мере, чем адреналин, который приводит к подъему только систолического давления. Адреналин стимулирует секрецию гормонов передней доли гипофиза, норадреналин же не вызывает подобного эффекта.

Кора надпочечников

В коре надпочечников различают три зоны: наружную - клубочковую, среднюю - пучковую и внутреннюю - сетчатую. Из коры надпочечника выделено около 50 кортикостероидов, однако только 8 из них являются физиологически активными.

Гормоны коры надпочечников делятся на три группы:

1) минералокортикоиды - альдостерон и дезоксикортикостерон, выделяемые клубочковой зоной и регулирующие минеральный обмен;

2) глюкокортикоиды – гидрокортизон, кортизон и кортикостерон (последний является одновременно и минералокортикоидом), выделяемые пучковой зоной и влияющие на углеводный, белковый и жировой обмен;

3) половые гормоны – андрогены, эстрогены, прогестерон, выделяемые сетчатой зоной.

Минералокортикоиды. Минералокортикоиды участвуют в регуляции минерального обмена организма и в первую очередь уровня натрия и калия в плазме крови.

Из минералокортикоидов наиболее активен альдостерон (у человека – это единственный представитель минералокортикоидов). В клетках эпителия канальцев почки он активирует синтез ферментов, повышающих энергетическую эффективность натриевого насоса. Вследствие этого увеличивается реабсорбция натрия и хлора в канальцах почек, что ведет к повышению содержания натрия в крови, лимфе и тканевой жидкости. Одновременно он снижает реабсорбцию калия в канальцах почки, а это приводит к потере калия и уменьшает его содержание в организме. Подобные

изменения возникают в клетках эпителия желудка и кишечника, слюнных и потовых железах. Таким путем альдостерон может предотвратить потерю натрия при сильном потоотделении во время перегревания.

Увеличение под влиянием альдостерона концентрации натрия в крови и тканевой жидкости повышает их осмотическое давление, приводит к задержке воды в организме и способствует возрастанию уровня артериального давления. Вследствие этого тормозится выработка ренина почками. Усиленная реабсорбция натрия может привести к развитию гипертонии. При недостатке минералокортикоидов реабсорбция натрия в канальцах почки уменьшается и организм теряет такое большое количество натрия, что возникает изменения внутренней среды, несовместные с жизнью, и через несколько дней после удаления коры надпочечников наступает смерть. Введением минералокортикоидов или больших количеств хлорида натрия можно поддержать жизнь животного, у которого удалены надпочечники. Поэтому минералокортикоиды образно называют гормонами, сохраняющими жизнь.

Регуляция уровня минералокортикоидов в крови. Количество минералокортикоидов, выделяемых надпочечниками, находится в прямой зависимости от содержания натрия и калия в организме. Повышенное количество натрия в крови тормозит секрецию альдостерона. Недостаток натрия в крови, наоборот, вызывает повышение секреции альдостерона. Таким образом, ионы Nа+ регулируют интенсивность функции клеток клубочковой зоны надпочечников непосредственно. Ионы К+ также действуют непосредственно на клетки клубочковой зоны надпочечников. Их влияние противоположно влиянию ионов Nа+, а действие выражено слабее. АКТГ гипофиза, влияя на эту зону, также увеличивает секрецию альдостерона, но эффект этот выражен слабее нежели влияние АКТГ на выработку глюкокортикоидов.

Глюкокортикоиды. Глюкокортикоиды (кортизон, гидрокортизон, кортикостерон) оказывают влияние на углеводный, белковый и жировой обмен. Наиболее активен из них кортизон. Свое название глюкокортикоиды получили из-за способности повышать уровень сахара в крови вследствие стимуляции образования глюкозы в печени. Полагают, что этот процесс осуществляется путем ускорения процессов дезаминирования аминокислот и превращения их безазотистых остатков в углеводы (глюконеогенез). Содержание гликогена в печени при этом может даже возрастать. Этим существенно отличаются глюкокортикоиды от адреналина, при введении которого содержание глюкозы в крови увеличивается, но запас гликогена в печени уменьшается.

Глюкокортикоиды влияют также на обмен жиров. Они усиливают мобилизацию жира из жировых депо и его использование в процессах энергетического обмена. Таким образом, эти гормоны оказывают многообразное влияние на метаболизм, изменяя как энергетические, так и пластические процессы. Глюкокортикоиды возбуждают ЦНС, приводят к бессоннице, эйфории, общему возбуждению.

Глюкокортикоиды способствуют развитию мышечной слабости и атрофии скелетной мускулатуры, что связано с усилением распада мышечных белков, а также снижением уровня кальция в крови. Они тормозят рост, развитие и регенерацию костей скелета. Кортизон угнетает продукцию гиалуроновой кислоты и коллагена, тормозит пролиферацию и активность фибробластов. Все это приводит к дистрофии и дряблости кожи, появлению морщин.

Кортизон повышает чувствительность сосудов мышц к действию сосудосуживающих агентов и снижает проницаемость эндотелия. В больших дозах глюкокортикоиды увеличивают сердечный выброс.

Отсутствие глюкокортикоидов не приводит к немедленной гибели организма. Однако при недостаточной секреции глюкокортикоидов понижается сопротивляемость организма различным

вредным воздействиям, поэтому инфекции и другие патогенные факторы переносятся тяжело и нередко приводят к гибели.

Факторы, влияющие на интенсивность образования глюкокортикоидов. При боли, травме, кровопотере, перегревании, переохлаждении, некоторых отравлениях, инфекционных заболеваниях, тяжелых психических переживаниях выделение глюкокортикоидов усиливается. При данных состояниях рефлекторно усиливается секреция адреналина мозговым слоем надпочечников. Поступающий в кровь адреналин воздействует на гипоталамус, вызывая усиление образования в некоторых его клетках полипептида - кортикотропинвысвобождающего фактора, способствующего образованию в передней доле гипофиза АКТГ. Этот гормон является фактором, стимулирующим выработку в надпочечнике глюкокортикоидов. При удалении гипофиза наступает атрофия пучковой зоны коры надпочечников и секреция глюкокортикоидов резко снижается.

+ Можно отметить общность функционального значения внутренней секреции мозгового и коркового слоев надпочечника. Их гормоны обеспечивают усиление защитных реакций при чрезвычайных, угрожающих нормальному состоянию организма воздействиях - аварийных ситуациях. При этом мозговое вещество, выделяющее адреналин, способствует усилению активных поведенческих реакций организма, а корковое вещество, деятельность которого стимулируется через гипоталамус тем же адреналином, выделяет гормоны, усиливающие внутренние факторы сопротивляемости организма.

Половые гормоны коры надпочечников. Половые гормоны коры надпочечников - андрогены и эстрогены - играют важную роль в развитии половых органов в детском возрасте, т.е. на том этапе онтогенеза, когда внутрисекреторная функция половых желез еще слабо выражена.



Поделиться:


Последнее изменение этой страницы: 2021-07-18; просмотров: 78; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.186.6 (0.054 с.)