Белки, их строение, функции, свойства 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Белки, их строение, функции, свойства



Белки, их строение, функции, свойства

 

Белки – это сложные высокомолекулярные природные соединения, непериодические полимеры, мономерами которых являются аминокислоты.

В организме человека встречается 5 млн. типов белковых молекул, отличающихся не только друг от друга, но и от белков других организмов. Такое разнообразие обеспечивается сочетанием всего лишь 20 разных аминокислот, составляющих несколько сотен, а иногда и тысяч комбинаций. Порядок их чередования может быть самым разнообразным; благодаря этому возможно существование огромного числа молекул белка, отличающихся друг от друга. Напри­мер, из 20 остатков аминокислот теоретически можно составить около 2 • 1018 вариантов белковых молекул, различающихся порядком чере­дования аминокислот, а значит, и формой, и свойствами.

Белки делятся на протеины, содержащие только остатки аминокислот, и протеоды, содержащие еще и небелковую часть (липо-, хромо-, глико-, фосфопротеиды).

Молекула белка состоит из углерода, водорода, азота, серы, кислорода. Часть белков образует комплексы с другими молекулами, содержащими железо, фосфор, цинк и медь.

Белки имеют большую молекулярную массу: яичный альбумин - 36 000, гемоглобин - 152 000, миозин - 500 000. Для сравнения: молекулярная масса этилового спирта - 46, уксусной кислоты - 60, бензола – 78.

Аминокислотный состав белков

Белки состоят из б-аминокислот. Основными являются 20 видов б-аминокислот, хотя в клетках и тканях их найдено свыше 170.

В организме человека и других животных выделяют:

- заменимые аминокислоты - могут образовываться;

- незаменимые аминокислоты - образовываться не могут.

Незаменимые аминокислоты попадают в организм вместе с пищей. Растения образуют все виды аминокислот.

В зависимости от аминокислотного состава различают белки:

- полноценные - включают все аминокислоты;

- неполноценные - включают только некоторые аминокислоты.

Выделяют белки простые и сложные:

- простые - состоят только из аминокислот;

- сложные - включают кроме аминокислот неаминокислотный компонент (простетическую группу). Она состоит из металлов (металлопротеинов), углеводов (гликопротеинов), липидов (липопротеинов), нуклеиновых кислот (нуклеопротеинов).

В аминокислотах различают:

1) карбоксильную группу (-СООН),

2) аминогруппу (-NH2),

3) радикал или R-группу (остальная часть молекулы), отличается у разных видов аминокислот.

В зависимости от аминогрупп и карбоксильных групп различают:

- нейтральные аминокислоты, содержащие одну карбоксильную группу и одну аминогруппу;

- основные аминокислоты, содержащие более одной аминогруппы;

- кислые аминокислоты, содержащие более одной карбоксильной группы.

Аминокислоты проявляют амфотерные свойства.

 

Классификация белков в зависимости от строения

В зависимости от строения выделяют группы белков:

- Фибриллярные белки, их строение высокорегулярно, формируют полимерные соединения.

- Глобулярные белки имеют сферическую форму, являются водорастворимыми.

- Мембранные белки - имеют пересекающие клеточную мембрану домены, но части их выступают из мембраны в межклеточное окружение и цитоплазму клетки.

Различают простые и сложные белки:

- простые содержат только полипептидные цепи;

- сложные включают дополнительно неаминокислотные группы. Их подразделяют:

- Гликопротеины, включают углеводы;

- Липопротеины включают липиды;

- Металлопротеиды включают ионы металлов;

- Нуклеопротеиды включают ДНК или РНК;

- Фосфопротеины включают части фосфорной кислоты;

- Хромопротеиды включают окрашенные остатки различной химической природы.

 

Строение белков

Молекулы белков выглядят как линейные полимеры. Белки длиной от 2 до нескольких десятков аминокислотных остатков часто обозначают пептидами, при большей степени полимеризации - белками, но такое деление очень относительно.

Пептидные связи в белке формируются в результате взаимодействия б-карбоксильной группы (-COOH) одной аминокислоты с б-аминогруппой (-NH2) другой аминокислоты.

Выделяют 4 уровня структурной организации белков:

1. Первичная структура - последовательность аминокислотных остатков в полипептидной цепи.

Важными характеристиками первичной структуры становятся устойчивые сочетания аминокислотных остатков, несущие определённую функцию.

2. Вторичная структура - локальное упорядочивание части полипептидной цепи, уравновешенное водородными связями.


Основные типы вторичной структуры белков:

- б-спирали - плотные витки вокруг длинной оси молекулы.

- в-листы (складчатые слои) - несколько зигзагообразных полипептидных цепей.

- р-спирали и др.

3. Третичная структура - пространственная форма полипептидной цепи. Включает части вторичной структуры, уравновешенные разными видами взаимодействий, но основная роль принадлежит гидрофобным.

4. Четвертичная структура (субъединичная, доменная) - взаимное местоположение нескольких полипептидных цепей в структуре единого белкового комплекса. Молекулы белка с четвертичной структурой синтезируются на рибосомах по отдельности и только затем формируют общую надмолекулярную структуру. В структуре такого белка могут быть идентичные и различающиеся полипептидные цепочки. В уравновешивании четвертичной формы выделяют взаимодействия, как в третичной структуре. Надмолекулярные комплексы могут включать десятки молекул белка.

  • первичная структура белка – линейная последовательность аминокислот в полипептидной цепи, свернутых в пространстве:

 

 

  • вторичная структура белка – конформация полипептидной цепи, т.к. скручивание в пространстве за счет водородных связей между NH и СО группами. Есть 2 способа укладки: α -спираль и β - структура.

 

α -спираль На одном витке укладываются 4 аминокислотных остатка, которые находятся снаружи спирали.   β-структура. Полипептидная цепь растянута, ее участки располагаются параллельны друг другу и удерживаются водородными связями.


  • третичная структура белка – это трехмерное представление закрученной α -спираль или β -структуры в пространстве:

 

 

Эта структура образуется за счет дисульфидных мостиков –S-S- между цистеиновыми остатками. В образовании такой структуры участвуют противоположно заряженные ионы.

  • четвертичная структура белка образуется за счет взаимодействия между разными полипептидными цепями:

 

Функции белков в организме

Белки - это важные компоненты всех живых организмов, они участвуют в жизнедеятельности клетки.

Поскольку один и тот же белок может выполнять несколько функций, то классификация белков по ним достаточно условная.

Каталитическая функция

Ферменты - это белки, катализирующие разные реакции. Они способствуют расщеплению сложных молекул (катаболизм), их образованию (анаболизм) и др. Активный центр - это часть белка, отвечающая за связывание субстрата.

Выделяют 6 классов ферментов:

КФ 1: Оксидоредуктазы активизируют окислительно-восстановительные реакции;

КФ 2: Трансферазы активизируют перенос химических групп с одной молекулы субстрата на другую;

КФ 3: Гидролазы активизируют гидролиз химических связей;

КФ 4: Лиазы активизируют разрыв химических связей без гидролиза с формированием двойной связи в одном из продуктов;

КФ 5: Изомеразы активизируют структурные или геометрические превращения в молекуле субстрата;

КФ 6: Лигазы активизируют формирование химических связей между субстратами за счёт гидролиза дифосфатной связи АТФ или трифосфата.

Структурная функция

Структурные белки отвечают за форму клеток и органов. Многие из них являются филаментозными: например, глобулярные, растворимые мономеры актина и тубулина после полимеризации образуют длинные нити скелета клетки. Коллаген и эластин - главные части межклеточного вещества соединительной ткани (например, хряща), а из кератина формируются волосы, ногти, перья птиц и некоторые раковины.

Защитная функция

У белка выделяют следующие виды защитных функций:

- Физическая защита организма. В основном это белки со структурной функцией.

- Химическая защита заключается в соединении токсинов белками, т.е. в детоксикации.

- Иммунная защита - белки отвечают на повреждение и на атаку патогенов.

Регуляторная функция

Все реакции клетки управляются белками, они регулируют продвижение клетки по клеточному циклу, трансляцию, транскрипцию, сплайсинг, активность других белков и др. Данную функцию белки проявляют за счёт ферментативной активности (например, протеинкиназы), либо в результате специфичного связывания с другими молекулами.

Сигнальная функция

Это способность молекул передавать сигналы между клетками, тканями, органами и организмами. Часто данную функцию объединяют с регуляторной, так как многие внутриклеточные управляющие белки также выполняют передачу сигналов.

Такую функцию проявляют белки-гормоны, цитокины, факторы роста и др.

Транспортная функция

Белки, участвующие в транспорте, обладают высоким сродством (аффинность) к субстрату, когда его много, и легко высвобождают его там, где его мало.

Некоторые мембранные белки осуществляют транспорт малых молекул через мембрану клетки, изменяя её проницаемость. Белки-каналы состоят из заполненных водой внутренних пор, которые помогают веществам перемещаться через мембрану.

Рецепторная функция

Белковые рецепторы могут быть в цитоплазме и в клеточной мембране. При его воздействии вещества на определённый участок белка происходит его конформационное изменение, в том числе меняется конформация другой части молекулы, и передается сигнал на другие клеточные компоненты.

Химические свойства белков

Очень важным для жизнедеятельности живых организмов является буферное свойство белков, т.е. способность связывать как кислоты, так и основания, и поддерживать постоянное значение рН различных систем живого организма.

Гидратация. Процесс гидратации означает свя­зывание белками воды, при этом они проявля­ют гидрофильные свойства: набухают, их масса и объ­ем увеличиваются. Набуха­ние отдельных белков за­висит исключительно от их строения. Имеющиеся в со­ставе и расположенные на поверхности белковой ма­кромолекулы гидрофильные амидные (—СО—NH—, пеп­тидная связь), аминные (—NH2) и карбоксильные (—СООН) группы притягивают к себе молекулы воды, строго ориентируя их на поверхности моле­кулы. Окружающая белковые глобулы гидратная (водная) оболочка препятствует агрегации и осаж­дению, а следовательно, способствует устойчиво­сти растворов белка. В изоэлектрической точке белки обладают наименьшей способностью свя­зывать воду, происходит разрушение гидратной оболочки вокруг белковых молекул, поэтому они соединяются, образуя крупные агрегаты. Агрега­ция белковых молекул происходит и при их обе­звоживании с помощью некоторых органических растворителей, например, этилового спирта. Это приводит к выпадению белков в осадок. При из­менении pH среды макромолекула белка стано­вится заряженной, и его гидратационная способ­ность меняется.

При ограниченном набухании концентрирован­ные белковые растворы образуют сложные систе­мы, называемые студнями.

Студни не текучи, упруги, обладают пластичностью, определенной механической прочностью, способны сохра­нять свою форму. Глобуляр­ные белки могут полностью гидратироваться, растворяться в воде (например, белки молока), образуя растворы с невысокой кон­центрацией. Гидрофильные свойства белков, т. е. их способность набухать, образовывать студни, стабилизировать суспензии, эмульсии и пены, имеют большое значение в биологии и пищевой промышленности. Очень подвижным студнем, по­строенным в основном из молекул белка, является цитоплазма — сырая клейковина, выделенная из пшеничного теста; она содержит до 65 % воды. Различная гидрофильность клейковинных бел­ков — один из признаков, характеризующих ка­чество зерна пшеницы и получаемой из него муки (так называемые сильные и слабые пшеницы). Ги­дрофильность белков зерна и муки играет боль­шую роль при хранении и переработке зерна, в хлебопечении. Тесто, которое получают в хлебо­пекарном производстве, представляет собой набух­ший в воде белок, концентрированный студень, содержащий зерна крахмала.

Денатурация белков. При денатурации под вли­янием внешних факторов (температуры, механиче­ского воздействия, действия химических агентов и ряда других факторов) происходит изменение вторичной, третич­ной и четвертичной структур белковой макромолекулы, т. е. ее нативной простран­ственной структуры. Первич­ная структура, а следователь­но, и химический состав белка не меняются. Изменяются физические свой­ства: снижается растворимость, способность к ги­дратации, теряется биологическая активность. Меняется форма белковой макромолекулы, проис­ходит агрегирование. В то же время увеличивает­ся активность некоторых химических групп, об­легчается воздействие на белки протеолитических ферментов, а следовательно, он легче гидролизу­ется.

В пищевой технологии особое практическое значение имеет тепловая денатурация белков, степень которой зависит от температуры, продол­жительности нагрева и влажности. Это необходи­мо помнить при разработке режимов термообра­ботки пищевого сырья, полуфабрикатов, а иногда и готовых продуктов. Особую роль процессы те­пловой денатурации играют при бланшировании растительного сырья, сушке зерна, выпечке хлеба, получении макаронных изделий. Денатура­ция белков может вызываться и механическим воздействием (давлением, растиранием, встряхи­ванием, ультразвуком). Наконец, к денатурации белков приводит действие химических реагентов (кислот, щелочей, спирта, ацетона). Все эти при­емы широко используются в пищевой и биотех­нологии.

Пенообразование. Под процессом пенообразования понимают способность белков образовывать высококонцентрированные системы «жидкость — газ», называемые пенами. Устой­чивость пены, в которой бе­лок является пенообразовате­лем, зависит не только от его природы и от концентрации, но и от температуры. Белки в качестве пенообразо­вателей широко используются в кондитерской про­мышленности (пастила, зефир, суфле). Структуру пены имеет хлеб, а это влияет на его вкусовые ка­чества.

Молекулы белков под влиянием ряда факторов могут разрушаться или вступать во взаимодействие с другими веществами с образованием новых про­дуктов. Для пищевой промышленности можно вы­делить два важных процесса:

1) гидролиз белков под действием ферментов;

2) взаимодействие аминогрупп белков или амино­кислот с карбонильными группами восстанавли­вающих сахаров.

Под влиянием ферментов протеаз, катализиру­ющих гидролитическое расщепление белков, по­следние распадаются на более простые продукты (поли- и дипептиды) и в конечном итоге на ами­нокислоты. Скорость гидролиза белка зависит от его состава, молекулярной структуры, активности фермента и условий.

Гидролиз белков. Реакцию гидролиза с образо­ванием аминокислот в общем виде можно записать так:

 

Или

 

Горение. Белки горят с образованием азота, углекислого газа и воды, а также некоторых дру­гих веществ. Горение сопровождается характер­ным запахом жженых перьев.

 

Биуретовая реакция

При действии на белки раствора со­лей меди (II) в щелочной среде возникает сиреневое или фи­олетовое окрашивание.

Голубая окраска раствора соли меди изменяется на фи­олетовую (или несколько иную в зависимости от природы бел­ка) за счет образования комплексных соединений.

Ксантопротеиновая реакция

При действии на белки кон­центрированной азотной кислоты образуется желтая окраска, связанная с нитрованием ароматических колец в соответст­вующих аминокислотах. Если биуретовая реакция универ­сальна на все белки, то ксантопротеиновую дают только те полипептиды, которые содержат остатки фенилаланина, триптофана, тирозина. Таких аминокислот много в белках мышечных тканей (миозин), но почти нет в соединительных (желатин). Если на скорлупу вареного вкрутую яйца нанести несколько капель концентрированной азотной кислоты, про­исходит бурное вспенивание. Скорлупа состоит главным обра­зом из карбоната кальция. Разрушая скорлупу, кислота про­ходит до белка. В месте попадания азотной кислоты осталось желтое пятно. Его окраска усилится и пе­рейдет в оранжевую, если вырезанный фрагмент белка с пят­ном опустить в раствор щелочи или аммиака (нитроарен пере­ходит в ацинитроформу).

Белки, их строение, функции, свойства

 

Белки – это сложные высокомолекулярные природные соединения, непериодические полимеры, мономерами которых являются аминокислоты.

В организме человека встречается 5 млн. типов белковых молекул, отличающихся не только друг от друга, но и от белков других организмов. Такое разнообразие обеспечивается сочетанием всего лишь 20 разных аминокислот, составляющих несколько сотен, а иногда и тысяч комбинаций. Порядок их чередования может быть самым разнообразным; благодаря этому возможно существование огромного числа молекул белка, отличающихся друг от друга. Напри­мер, из 20 остатков аминокислот теоретически можно составить около 2 • 1018 вариантов белковых молекул, различающихся порядком чере­дования аминокислот, а значит, и формой, и свойствами.

Белки делятся на протеины, содержащие только остатки аминокислот, и протеоды, содержащие еще и небелковую часть (липо-, хромо-, глико-, фосфопротеиды).

Молекула белка состоит из углерода, водорода, азота, серы, кислорода. Часть белков образует комплексы с другими молекулами, содержащими железо, фосфор, цинк и медь.

Белки имеют большую молекулярную массу: яичный альбумин - 36 000, гемоглобин - 152 000, миозин - 500 000. Для сравнения: молекулярная масса этилового спирта - 46, уксусной кислоты - 60, бензола – 78.



Поделиться:


Последнее изменение этой страницы: 2021-05-12; просмотров: 180; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.118.30.253 (0.037 с.)