Тема электромагнитное поле. Электромагнитные воны их скорость и использование. Радиосвязь и телевидение. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Тема электромагнитное поле. Электромагнитные воны их скорость и использование. Радиосвязь и телевидение.



Изучите лекцию и составьте конспект:

«…Научная деятельность… единственное,

что переживает тебя и что на сотни и

тысячи лет врезается в историю человечества»

А.Ф. Иоффе

В прошлых темах говорилось о том, что в замкнутом контуре возникает индукционный ток при изменении магнитного потока, пронизывающего поверхность, ограниченную контуром. Это явление получило название явления электромагнитной индукции.

Из опытов Фарадея было установлено, что среднее значение ЭДС индукции в проводящем контуре пропорционально скорости изменения магнитного потока через поверхность, ограниченную контуром. Данное утверждение выражает закон электромагнитной индукции.

Явление возникновения ЭДС индукции полностью подчиняется закону сохранения энергии. Вокруг контура, по которому проходит электрический ток, всегда существует магнитное поле, причем магнитное поле возникает и исчезает вместе с возникновением и исчезновением тока.

Таким образом, согласно закону сохранения энергии, энергия магнитного поля, созданного током, равна той энергии, которую должен затратить источник тока (например, гальванический элемент или генератор на электростанции) на создание тока. При размыкании цепи эта энергия переходит в другие виды.

Естественно предположить, что энергия магнитного поля должна равняться работе, которая затрачивается током на создания этого поля. При этом она равна именно работе против сил ЭДС самоиндукции, возникающей при замыкании цепи.

Рассчитаем эту работу. Для этого рассмотрим простейшую схему. Подключим к источнику тока проводящий контур с индуктивностью L.

Если теперь, с помощью ключа, замкнуть цепь, то за некоторый небольшой промежуток времени D t сила тока увеличится от нуля до некоторого значения I. Также при этом возрастет и магнитный поток от нуля до некоторого значения LI.

Мгновенному нарастанию силы тока в цепи будет препятствовать явление самоиндукции, возникающей в контуре.

Из курса физики 8 класса известно, что за некоторый промежуток времени через контур перенесется заряд, равный произведению силы тока на промежуток времени.

В рассматриваемом случае формула записана для равномерного возрастания силы тока в цепи. Если же ток в цепи будет нарастать не равномерно, то необходимо будет рассматривать малые промежутки времени, в течении которых можно считать скорость изменения силы тока постоянной.

При переносе заряда источник тока совершит работу, значение которой можно найти как произведение ЭДС самоиндукции, взятой с обратным знаком, и заряда, прошедшего через контур.

Подставив в полученную формулу, значение заряда и значение ЭДС самоиндукции, получим формулу для работы:

Значение этой работы, совершаемой источником тока против ЭДС самоиндукции, и будет равна энергии магнитного поля(вторая и третья часть формулы получены, путем выражения одной из величины из формулы для магнитного потока).

Вторая и третья часть формулы получены путем выражения одной из величин из формулы для магнитного потока.

Если магнитное поле создано током, проходящем в соленоиде, то энергию магнитного поля соленоида с токомможно рассчитать по формуле:

Согласно теории близкодействия, энергия магнитного поля (аналогично, как и энергия электрического поля) распределена по всему объему пространства, в котором существует магнитное поле.

Величину, равную энергии магнитного поля, заключенной в единичном объеме этого поля, будем называть объемной плотностью энергии магнитного поля. Ее можно рассчитать по формуле:

Если рассмотреть движущийся проводник в магнитном поле, то возникновение ЭДС индукции объясняется довольно просто. Все дело в том, что при движении проводника в магнитном поле, происходит перераспределение зарядов внутри проводника: положительные заряды накапливаются на одном конце проводника, отрицательные — на другом. И это перераспределение зарядов будет происходить до тех пор, пока электрическая сила не скомпенсирует силу Лоренца.

Если разложить вектор силы Лоренца на две составляющие: направленные вдоль проводника и перпендикулярно ему, то именно продольная составляющая и будет совершать работу по разделению электрических зарядов. Если такой проводник замкнуть, то по цепи пройдет индукционный ток.

Однако, если замкнутый проводник, находящийся в магнитном поле, неподвижен, то объяснить возникновение ЭДС индукции действием силы Лоренца нельзя, так как она действует только на движущиеся электрические заряды.

Однако, из курса физики 10 класса известно, что движение зарядов может происходить и под действием электрического поля. Значит, можно предположить, что электроны в неподвижном проводнике приводятся в движение электрическим полем, и это поле непосредственно порождается переменным магнитным полем. К этому выводу впервые пришел Джеймс Клерк Максвелл.

Электрическое поле, создаваемое переменным магнитным полем, было названо индуцированным электрическим полем. Оно создается в любой точке пространства, где имеется переменное магнитное поле, независимо от того, имеется ли там проводящий контур или нет. Контур позволяет лишь обнаружить возникающее электрическое поле. Тем самым Максвелл обобщил представления Фарадея о явлении электромагнитной индукции, показав, что именно в возникновении индуцированного электрического поля, вызванного изменением магнитного поля, состоит физический смысл явления электромагнитной индукции.

Индуцированное электрическое поле отличается от известных электростатического и стационарного электрический полей. Во-первых, оно вызвано не каким-то распределением зарядов, а переменным магнитным полем. Во-вторых, в отличии от линий напряженности электростатического и стационарного электрического полей, которые начинаются на положительных зарядах и заканчиваются на отрицательных зарядах, линии напряженности индуцированного поля — это замкнутые линии. Поэтому это поле — вихревое поле.

Как показали различные исследования, линии индукции магнитного поля и линии напряженности вихревого электрического поля расположены во взаимно перпендикулярных плоскостях. Вихревое электрическое поле связано с наводящим его переменным магнитным полем правилом левого винта: если острие левого винта поступательно движется по направлению изменения вектора магнитной индукции, то поворот головки винта укажет направление линий напряженности индуцированного электрического поля.

В-третьих, индуцированное электрическое поле не является потенциальным. Разность потенциалов между любыми двумя точками проводника, по которому проходит индукционный ток, равна нулю. Работа же, совершаемая этим полем при перемещении заряда по замкнутой траектории, не равна нулю. Т.е., в этом случае, ЭДС индукции и есть работа индуцированного электрического поля по перемещению единичного заряда по рассматриваемому замкнутому контуру. Поэтому не потенциал, а именно ЭДС индукции является энергетической характеристикой индуцированного поля.

В середине 60-ых годов 19 века Джеймс Максвелл пришел к выводу о том, что наряду с процессом появления вихревого электрического поля при изменении магнитного поля, должен существовать и обратный процесс, состоящий в том, что переменное электрическое поле вызывает появление переменного магнитного поля, линии индукции которого охватывают линии напряженности переменного электрического поля и связаны с ним правилом правого винта.

Согласно гипотезе Максвелла магнитное поле, например, при зарядке конденсатора после замыкания ключа создается не только током в проводнике, но и изменяющимся электрическим полем, существующим в пространстве между обкладками конденсатора. Причем изменяющееся электрическое поле создает такое же магнитное поле, как если бы между обкладками существовал электрический ток, такой же, как и в проводнике.

Таким образом, Максвелл сделал вывод о том, что вихревое электрическое и магнитное поля "сцеплены" друг с дру­гом, существуют одновременно и взаимно порождают друг друга. Совокупность неразрывно связанных друг с другом вихревых электрического и магнитного полей называют электромагнитным полем.

Примечательно то, что Максвелл предсказал существование электромагнитного поля за 22 года до того, как оно было обнаружено экспериментально.

После открытия взаимосвязи между изменяющимися электрическим и магнитным полями стало ясно, что эти поля не существуют обособленно, независимо одно от другого. Т.е. нельзя создать переменное магнитное поле без того, чтобы одновременно в пространстве не возникло и электрическое поле. И наоборот, переменное электрическое поле не может существовать без магнитного.

Отдельное же рассмотрение электрического и магнитного полей имеет только относительный смысл. Так, если электростатическое поле создается системой неподвижных зарядов, то эти заряды, являясь неподвижными относительно одной инерциальной системы отсчета, могут двигаться относительно другой и, следовательно, будут порождать не только электрическое, но и магнитное поле. Аналогично, в системе отсчета связанной с магнитом, обнаруживается лишь магнитное поле. Но движущийся относительно магнита наблюдатель обнаружит и электрическое поле. Ведь в системе отсчета, движущейся относительно магнита, магнитное поле будет меняться с течением времени по мере приближения наблюдателя к магниту или удаления от него. А, как мы уже выяснили, переменное во времени магнитное поле порождает вихревое электрическое поле.

Таким образом, мы можем сделать вывод о том, что в природе существует единое электромагнитное поле, т.е. особый вид материи, посредством которой осуществляются электромагнитные взаимодействия в природе.

Упражнения.

Задача: если бы можно было создать большие сверхпроводящие катушки без внешнего источника тока, индуктивностью, например, 100 Гн, то какое количество льда, взятого при температуре плавления, можно превратить в воду и нагреть до 100° С за счет энергии магнитного поля этой катушки, если сила тока в ней составляет 10 кА?

Основные выводы:

Магнитное поле, на подобие электрического, обладает энергией, прямо пропорциональной квадрату силы тока.

Гипотеза Максвелла: переменное электрическое поле порождает переменное магнитное поле. И, наоборот, в любой области пространства, где существует переменное магнитное поле, появляется вихревое электрическое поле.

Электромагнитное поле — это особый вид материи, посредством которой осуществляются электромагнитные взаимодействия в природе.

Радиосвязь

Эксперименты Герца показали, что с помощью электромагнитных волн можно подавать и принимать сигналы. Но сам Герц не видел практического применения открытых им электромагнитных волн, так как все удачные эксперименты проводились в очень малой области пространства — в пределах лабораторного стола. Однако его опыты послужили толчком для исследования новых возможностей приёма и передачи электромагнитных волн.

Одним из первых, кто высказал мысль о применении электромагнитных волн для передачи сигналов на расстояние был Александр Степанович Попов. 7 мая 1895 года на заседании Русского физико-химического общества учёный продемонстрировал прибор, способный улавливать и регистрировать грозовые разряды на расстоянии до 30 километров.

А уже менее чем через год (24 марта 1896 года) Попов передал первую в мире беспроводную радиограмму на расстояние 250 метров. Но обо всём по порядку. Итак, в 1890 году французский физик Эдуард Бранли для регистрации электромагнитных волн изобрёл прибор, позже названный когерером.

Он представлял собой стеклянную трубку, в которой находились металлические опилки с выведенными наружу контактами. При нормальных условиях сопротивление опилок очень большое. Но под действием электромагнитных колебаний между ними проскакивают искорки, опилки слипаются и сопротивление когерера резко уменьшается в несколько сот раз. Чтобы вернуть прибор в исходное состояние его нужно было встряхнуть.

В 1894 году произошла первая в мире публичная демонстрация опытов по беспроводной телеграфии британским физиком Оливером Лоджем в Оксфордском университете. При демонстрации сигнал был отправлен из лаборатории в соседнем корпусе и принят прибором в театре на расстоянии 40 метров.

Радиоприёмник Лоджа представлял собой антенну, гальванометр, электрический звонок и радио-кондуктор Бранли, который Лодж и назвал когерером. Однако при регистрации радиоволн цепь приёмника оставалось замкнутой и по прекращении действия волн. Для разрыва контакта и приведения приёмника в состояние готовности к приёму следующего сигнала требовалось вмешательство человека….

В том же году преподаватель Минного офицерского класса в Кронштадте, выпускник петербургского университета Александр Степанович Попов собрал радиоприёмник, регистрирующий электромагнитные волны, возникающие при грозовых разрядах.

7 мая 1895 года Попов доложил Русскому физико-химическому обществу об изобретённом им приборе. Свой доклад он закончил следующими словами: «В заключение могу выразить надежду, что мой прибор при дальнейшем усовершенствовании его может быть применён к передаче сигналов на расстояние при помощи быстрых электрических колебаний, как только будет найден источник таких колебаний, обладающий достаточной энергией».

Примерно тогда же Попов заинтересовался опытами Лоджа и попытался воспроизвести их, построив собственную модификацию приёмника.

Главное отличие приёмника Попова от прибора Лоджа состояла в следующем. Для приёма нового радиосигнала когерер нужно встряхнуть, чтобы нарушить контакт между опилками. Попов ввёл в схему автоматическую обратную связь. Как только появляется электромагнитная волна, в опилках проскакиваю искорки и сопротивление когерера падает. Это влечёт увеличение силы тока в цепи и якорь реле замыкает цепь электромагнита, включённого параллельно цепи когерера. А молоточек звонка сигнализирует о приходе волны. При этом цепь размыкается и молоточек ударяет по когереру, встряхивая опилки и, тем самым, увеличивая их сопротивление — реле размыкает цепь звонка.

Летом 1895 года Попов усовершенствовал свой прибор, добавив к нему приёмную антенну. А в марте 189) года — телеграфный аппарат для приёма текста.

Как мы уже упоминали, 24 марта 1896 года были переданы первые в мире слова с помощью азбуки Морзе — «Генрих Герц». Гениальность Александра Степановича проявилась и в том, что он понял какое практическое значение имеет его изобретение и предложил использовать беспроводную связь для оперативной связи с кораблями в Балтийском море и Финском заливе. Правоту Попова подтвердили события, произошедшие несколько лет спустя. Так в ноябре 1899 года сел на мель броненосец «Генерал-Адмирал Апраксин». Команда крейсера «Адмирал Нахимов» заметила терпящий бедствие корабль и по радио сообщило о происшествии в Санкт-Петербург. В итоге корабль был спасён.

Но вернёмся в девяносто пятый год. Летом сообщение о работах Попова дошло до Италии в университет города Болонья (эти документы до сих пор хранятся там в библиотеке) и с ними познакомился профессор Аугусто Риге. В конце 1895 года он знакомит с ними молодого студента Гульельмо Маркони, который используя чертежи Попова создаёт свой радиоприёмник и в июне 1896 года подаёт предварительную заявку на патент. Несмотря на то, что предлагаемая итальянцем схема повторяла приёмник Попова заявку утвердили и 2 июля следующего года выдали патент.

12 декабря 1901 года Маркони потряс мировую общественность, осуществив первый сеанс трансатлантической радиосвязи между Англией и Ньюфаундлендом. Он передал букву S азбуки Морзе на расстояние в 3200 километров, что до этого считалось принципиально невозможным.



Поделиться:


Последнее изменение этой страницы: 2021-05-12; просмотров: 172; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.15.218.254 (0.025 с.)