Пленки на металлических поверхностях 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Пленки на металлических поверхностях



 

Практически все металлы подвергаются окислению. Металлические поверхности в процессе обработки очень быстро покрываются первичной окисной пленкой. Такие пленки обнару­живаются и на благородных металлах. Несмотря на малую толщину, пленка всего в несколько элементарных ячеек кристаллической решетки данной фазы окисла при нормальной температуре приостанавливает дальнейшее окисление. Разрушение поверхностей трения в среде воздуха тоже сопровождается их окислением.

Продуктами окисления могут быть твердые растворы кислорода в металле и их химические соединения. Так, железо при нормальной температуре растворяет около 0,05% кислорода, а при 1000°С 0,12%. Если окисление продолжается выше предела насыщения, то из раствора выпадают окислы. Железо с кислородом образует три окисла, представляющие собой фазы в системе  с различным типом кристаллической решетки: вюстит FeO, магнетит  и гематит . Вюстит растворим в же­лезе и устойчив при температурах выше 570°С; ниже этой темпе­ратуры он распадается на магнетит и чистое железо 4 FeO = . Магнетит и гематит устойчивы во всем диапазоне температур до точек плавления. Пленка на железе состоит из слоев, расположенных от поверхности внутрь в последовательности, соответствующей убыванию кислорода в окисле. При температуре ниже 570°С пленка может состоять из одного слоя , из наружного слоя  и следующего за ним слоя  или из слоев ,  и FeO, причем распад FeO идет вслед за его образованием.

Скорость образования оксидной пленки на поверхности ме­талла исчисляется долями секунды. Так, для возникновения слоя толщиной 1,4 нм достаточно 0,05 с. С увеличением толщины рост пленки замедляется.

Оксидная пленка находится в напряженном состоянии, испытывая растяжение или сжатие в зависимости от соотношения объемов основного металла и образовавшегося на его базе окисла. С увеличением толщины пленки возрастают силы упругости в самой пленке и на границе между пленкой и основным метал­лом. При некоторой толщине пленки происходит потеря ее ус­тойчивости, наступают мгновенные смещения, и пленка приобретает пористое (рыхлое) строение.

Внешний слой поверхности состоит из загрязнений, попавших на поверхность при обработке, и адсорбированных газов и паров. Толщина этого слоя 0,1—2,5 нм. Расположенный под ним слой, возникающий под влиянием атмосферного кислорода, имеет на железе толщину до 5 нм, на стали примерно до 2 нм, на алюминии до 15 нм (по данным А. Д. Манасевича).

Толщина граничного смазочного слоя около 20 нм.

КОНТАКТИРОВАНИЕ ДЕТАЛЕЙ

Взаимное контактирование деталей происходит на вершинах волн и выступах поверхностей, образованных макронеровностями.

Процесс контактирования поверхностей при статическом нагружении протекает следующим образом. Поверхность воспри­нимает нагрузку вершинами выступов неровностей на высотах, образуемых макрогеометрическими отклонениями. Здесь располагаются зоны, из которых складывается фактическая пло­щадь касания. В контакт первыми вступают противостоящие друг другу на сопряженных поверхностях выступы, сумма высот которых наибольшая. Деформация неровностей и их основ вызывает сближение поверхностей. По мере увеличения нагруз­ки поверхности все более сближаются и в контакт вступают пары выступов с меньшей суммой высот. Разновременность вхождения в контакт выступов, различающихся по высоте, дифференцирует их напряженное состояние и деформацию.

Возможны следующие деформации выступов: упругая; упругопластическая без упрочнения; упругопластическая с упрочнением. При первичном нагружении чисто упругая деформация неровностей возможна только у эластичных тел, например резины; упругая деформация превалирует при контактировании весьма гладких твердых металлических поверхностей. В большинстве случаев первичного нагружения пластической деформации принадлежит ведущая роль в формировании фактической площади контакта. Входящие в касание выступы пластически сплющива­ются, чаще всего с внедрением: внедряется более твердый выступ или тот, которому геометрическая форма придает большее сопро­тивление деформации.

Пластическая деформация выступов микронеровностей и их взаимное внедрение начинаются при среднем давлении на контакте, равном примерно утроенному пределу текучести мате­риала. Предельное среднее давление на площадях фактического контакта с учетом упрочнения материала в процессах пластической деформации достигает двух-трехкратного значения его твердости при вдавливании. При этом давлении материал под контурной площадкой, деформировавшийся упруго, начинает деформироваться пластически, в результате либо увеличиваются размеры площадки за счет частичного погружения находящихся в контакте выступов и поднятия других с вступлением их в контакт, либо возникают новые площади контакта. Полное погружение выступов в пластически деформированную основу не наблюдается. После деформации, даже сильной, шероховатость поверхностей лишь несколько видоизменяется.

Площадь фактического контакта поверхностей состоит из множества дискретных малых площадок, расположенных на раз­личных высотах пятен касания в местах наиболее полного сбли­жения поверхностей. Между площадками касания тел имеются соединенные между собой или закрытые микрополости, заполненные воздухом или другой газовой средой, смазочным материалом, продуктами изнашивания и т. п. Площадь фактического контакта зависит от микро- и макрогеометрии поверхностей, волнистости, физико-механических свойств поверхностного слоя и от нагрузки. При небольшой нагрузке рост площади фактиче­ского контакта сопровождается увеличением размеров площадок контакта.

Площадь фактического контакта составляет от одной десятитысячной до одной десятой номинальной площади касания. Даже при высоких нагрузках площадь фактического контакта не превышает 40% номинальной площади. Так, в случае контактирования стали по стали при нагрузке 15 МПа отношение площадей составило 0,2 при обработке поверхности до Ra = 2,5...1,25 мкм и 0,35 при Rа = 0,63...0,32 мкм.

Площадь фактического контакта возрастает при увеличении нагрузки, уменьшении шероховатости поверхности и росте радиуса закругления вершин ее неровностей; кроме того, она не­сколько увеличивается при большей длительности действия нагрузки. Эта площадь убывает с увеличением упругих характе­ристик, предела текучести материала и высоты неровностей поверхностей.

При сопряжении поверхностей из двух различных материалов площадь фактического контакта определяется физико-меха­ническими свойствами более мягкого материала и геометрией поверхности более твердого материала. При наличии между поверхностями трения тонкой квазиожиженной медной пленки, образуемой при трении в условиях режима избирательного переноса, площадь фактического контакта может увеличиться в 10—100 раз. Это является одной из причин резкого снижения интенсив­ности изнашивания поверхности трения.



Поделиться:


Последнее изменение этой страницы: 2021-04-20; просмотров: 128; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 52.14.85.76 (0.005 с.)