Проверка суммарного люфта в рулевом управлении 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Проверка суммарного люфта в рулевом управлении



Проверка суммарного люфта рулевого управления:

1. Привести управляемые колеса в положение, примерно соответствующее прямолинейному движению.

2. Установить позади рулевого колеса специальный шаблон (транспортир).

3. Повернуть рулевое колесо до положения, соответствующего началу поворота управляемых колес в одну сторону, а затем – в другую сторону до положения, соответствующего началу поворота управляемых колес в противоположную сторону. При этом измерить угол между указанными крайними положениями, который и является суммарным люфтом в рулевом управлении. Сравнить его с нормативным.

Технические условия:

1. Проверку производить на неподвижном АТС. Если АТС оборудовано усилителем рулевого управления, то двигатель должен работать.

2. Допускается максимальная погрешность измерений суммарного люфта не более 1°.

Суммарный люфт не более (градусов)

Легковые автомобили и созданные на их

базе грузовые автомобили и автобусы 10

Автобусы 20

Грузовые автомобили 25

 

81. Углы установки колес. Определение углов колес, их назначение.

Правильные углы установки колес – один из важнейших факторов, обеспечивающих нормальную управляемость, стабильность и устойчивость автомобиля при прямолинейном движении и при прохождении поворотов. Оптимальные для каждой модели параметры геометрии подвески закладываются на этапе проектирования. Заданные значения углов установки колес подвержены изменению и требуют периодической регулировки по причине естественного износа узлов и элементов ходовой части или после ремонта подвески.

Корректно настроенная геометрия подвески позволяет автомобилю более эффективно воспринимать силы и моменты, возникающие в пятне контакта колеса с дорожной поверхность во время различных режимов движения. Этим обеспечивается предсказуемое поведение автомобиля, а именно: стабильность движения по прямой, устойчивость в поворотах, стабилизация при разгонах и торможении. Также благодаря отсутствию излишнего сопротивления качению колес происходит более равномерный износ шин, что позволяет увеличить срок их службы.

Заданные производителем значения углов установки колес являются оптимальными для конкретного автомобиля и соответствуют его назначению и особенностям настройки подвески. Однако, в случае необходимости, конструктивно предусмотрена возможность их изменения либо регулировки. Количество параметров, которые можно регулировать для каждого автомобиля, индивидуально.

Виды основных углов установки колес автомобиля

Параметр Ось автомобиля Регулируемый параметр На что влияет
Угол развала колес (Camber) Передняя Задняя Да (зависит от автомобиля) Устойчивость движения в повороте Преждевременный износ шин
Угол схождения колес (Toe) Передняя Задняя Да Устойчивость при прямолинейном движении Преждевременный износ шин
Поперечный угол наклона оси поворота (KPI) Передняя Нет Стабилизация автомобиля при движении
Продольный угол наклона оси поворота (Caster) Передняя Да (зависит от автомобиля) Стабилизация автомобиля при движении
Плечо обкатки Передняя Нет Стабильность автомобиля при торможении Стабилизация автомобиля при движении

Развал колес – это угол, образованный средней плоскостью колеса и вертикалью, проходящей через точку пересечения средней плоскости колеса и опорной поверхности. Различают положительный и отрицательный развал: положительный (+) – когда верхняя часть колеса наклонена наружу (от кузова автомобиля); отрицательный (-) – когда верхняя часть колеса наклонена внутрь (к кузову автомобиля).

Конструктивно развал формируется положением ступичного узла и обеспечивает максимальную площадь пятна контакта шины с дорогой. В случае двухрычажной независимой подвески положение ступицы определяется верхним и нижним поперечными рычагами. В подвеске типа МакФерсон на формирование угла развала влияет нижний рычаг и амортизационная стойка. Отклонение значений угла развала от нормы влияют на автомобиль следующим образом. Слишком большой отрицательный угол: хорошая устойчивость авто в поворотах; ухудшается сцепление колес при прямолинейном движении; повышенный износ внутренней стороны шины. Слишком большой положительный угол: хорошее сцепление колес с дорогой; ухудшается устойчивость в поворотах; повышенный износ наружной стороны шины. Схождение колес – угол между продольной осью автомобиля и плоскостью вращения колеса. Может быть также определено как разность расстояний между передними и задними бортами ободов колес (на рисунке это значение А минус В). Таким образом, схождение может измеряться в градусах либо миллиметрах.

Различают суммарное и индивидуальное схождение. Индивидуальное схождение рассчитывается отдельно для каждого колеса. Это отклонение плоскости его вращения от продольной оси симметрии автомобиля. Суммарное схождение рассчитывается как сумма индивидуальных углов схождения левого и правого колес одной оси. Аналогично определяется суммарное схождение в миллиметрах. При положительном схождении (англ. toe-in) колеса взаимно повернуты внутрь по направлению движения, при отрицательном значении (англ. toe-out) – наружу. Отклонение значений угла схождения от нормы влияют на автомобиль следующим образом. Слишком большой отрицательный угол: ухудшается выдерживание траектории движения; повышенный износ шины с внутренней стороны; острая реакция авто на рулевое управление. Слишком большой положительный угол: ухудшается выдерживание траектории движения; повышенный износ шин с наружной стороны.

Поперечный угол наклона оси поворота колеса– угол между осью поворота колеса и перпендикуляром к опорной поверхности. Благодаря данному параметру при повороте управляемых колес кузов автомобиля приподнимается, вследствие чего возникают силы, стремящиеся вернуть колесо в прямолинейное положение. Таким образом, KPI оказывает значительное влияние на стабильность и устойчивость автомобиля при прямолинейном движении. Разность величин углов поперечного наклона правой и левой осей может приводить к уводу автомобиля в сторону с большим наклоном. Данный эффект может проявляться и при соответствии нормальным значениям остальных углов установки колес.

Продольный угол наклона оси поворота (англ. caster) – угол между осью поворота колеса и перпендикуляром к опорной поверхности в продольной плоскости автомобиля. Различают положительный и отрицательный углы продольного наклона оси поворота колеса. Положительный caster способствует возникновению дополнительной динамической стабилизации автомобиля при движении на средней и высокой скорости. При этом ухудшается поворачиваемость на малой скорости.

Помимо вышеперечисленных параметров, для передней оси имеет большое значение еще одна характеристика – плечо обкатки. Это расстояние между точкой, образованной пересечением оси симметрии колеса и опорной поверхности, и точкой пересечения линии поперечного наклона оси поворота и опорной поверхности. Плечо обкатки положительное, если точка пересечения поверхности и ось поворота колеса лежат справа от оси симметрии колеса (нулевого плеча), и отрицательное, если располагается слева от него. Если эти точки совпадают – то плечо обкатки нулевое. Данный параметр влияет на стабилизацию и поворачиваемость колеса. Оптимальным значением для современных автомобилей является нулевое либо положительное плечо обкатки. Знак плеча обкатки определяется развалом, поперечным наклоном оси поворота колеса и вылетом колёсного диска. Автопроизводители не рекомендуют устанавливать колесные диски с нестандартным вылетом, т.к. это может повлечь изменение заданного плеча обкатки на отрицательное значение. Это может серьезно повлиять на устойчивость и управляемость автомобиля.

Изменение значений углов установки колес и их регулировка Углы установки колес подвержены изменениям вследствие естественного износа деталей, а также после их замены на новые. Все без исключения рулевые тяги и наконечники имеют резьбовое соединение, которое позволяет увеличить или уменьшить их длину для регулировки величин углов схождения колес. Схождение задних колес, равно как и передних, регулируется на всех типах подвесок, за исключением задней зависимой балки или моста.

Регулировка значений развала для задней и передней оси предусмотрена далеко не на всех автомобилях: она отсутствует на зависимой подвеске, на подвеске МакФерсон (за исключением небольшого ряда моделей авто, у которых верхний крепеж стойки – это болт с эксцентриком). Присутствует настройка camber, как правило, на обоих осях подвесок с верхними и нижними поперечными рычагами. Неправильный сход-развал задних колес на переднеприводном автомобиле оказывает меньшее влияние на его управляемость и неравномерный износ шин, поскольку задняя часть менее нагружена. Параметры caster и KPI, регулировка которых в конструкции подвески автомобиля, как правило, не предусмотрена, должны всегда соответствовать допустимым значениям.

 

82. Типы тормозных систем, их назначение. Требования к эффективности тормозных систем.

Тормозная система автомобиля служит для снижения его скорости или полной остановки.

По назначению выделяют следующие типы тормозных систем: рабочую, резервную, стояночную и вспомогательную.

Тормозные механизмы

По принципу действия По форме поверхностей трения
Механические

Барабанные

Пневматические
Гидравлические

Дисковые

Комбинированные

1. Рабочая (основная) тормозная система предназначена для снижения скорости движения автомобиля и для его остановки. Часть системы, которая переносит усилие с педали тормоза на тормозные колодки, называют тормозным приводом.

2. Резервная (запасная) тормозная система включается при неисправности рабочей системы. В современном автомобилестроении, как правило, выполнена не автономно, а в составе одной из частей рабочей системы.

3. Стояночная тормозная система, в первую очередь, служит для предотвращения нежелательного самопроизвольного движения автомобиля во время стоянки.

Кроме того, ее используют для облегчения трогания в гору, при длительной остановке в «пробке», для ухода в управляемый занос или при полном отказе рабочей тормозной системы.

Эта система может быть реализована механическим способом (тросы к задним колесам или к трансмиссии) или посредством гидравлики.

4. Вспомогательная тормозная система предназначена для поддержания постоянной скорости автомобиля при движении его на затяжных спусках гор или дорог и регулирования его самостоятельно или одновременно с рабочей тормозной системой с целью разгрузки тормозных механизмов.

Двухконтурная гидравлическая тормозная система.

Существует несколько основных способов разделить тормозную систему на контуры: поосевой, диагональный и полный. Рассмотрим каждый подробнее.

1. Поосевая система — один контур на передние колеса, второй контур — на задние. Это наиболее простой способ, часто применяемый на автомобилях классической компоновки, например, ВАЗовская «классика». К его достоинствам можно отнести отсутствие увода в сторону при торможении с одним рабочим контуром. Однако, есть важный недостаток — при обрыве переднего контура эффективность торможения значительно падает (примерно на 65%).

2. Диагональная система — один контур на переднее левое и заднее правое колеса, второй контур — на переднее правое и заднее левое. К положительным сторонам этого способа можно отнести равномерное распределение нагрузки между контурами. То есть, не зависимо от того, какой контур выйдет из строя, эффективность торможения упадет ровно на 50%.

Главный недостаток — увод от прямолинейного движения при торможении после обрыва одного из контуров. Это связано с тем, что эффективность работы передних тормозных механизмов значительно выше, чем в задних. Данный тип разделения применим в большинстве современных автомобилей.

3. Полная система — значительно сложнее двух предыдущих. Один из контуров работает на все 4 колеса, второй контур — только на передние. При этом, передние тормозные механизмы имеют минимум по 2 полностью независимых цилиндра. Система нашла свое применение на автомобилях Москвич, Волга, Нива.

Выше говорилось, что эффективность передних тормозов легковых автомобилей значительно выше, чем в задних. Поскольку при торможении автомобиля центр тяжести смещается вперед, нагрузка на переднюю ось возрастает, а на заднюю ось — уменьшается. Соответственно задние колеса имеют худшее сцепление с дорогой, чем передние и при большом тормозном усилии могут сорваться в юз. Это особенно опасно на скользкой дороге или при торможении во время прохождения поворота.

Один из самых простых способов борьбы с этой проблемой — применение на задней оси автомобиля тормозных систем со сниженной эффективностью. Например, на переднюю ось устанавливаются тормозные диски на 14 дюймов, а на заднюю — на 12. Более надежный способ — применение регулятора тормозных усилий. Впервые в отечественном автомобилестроении данный элемент применен на Жигулях ВАЗ-2101. Принцип его работы был не совсем понятен рядовым автолюбителям, поэтому его в народе прозвали «колдун». Регулятор имеет в своей конструкции клапан, частично перекрывающий тормозную жидкость и снижающий ее давление. Регулятор обычно закрепляют под днищем автомобиля, а от клапана ведут тягу к задней балке. При торможении автомобиля его задняя подвеска разгружается, увеличивается расстояние между днищем и балкой, а тяга перекрывает клапан, снижая тормозное усилие. Существуют регуляторы, снижающие усилие постоянно, не зависимо от загруженности подвески. Такие регуляторы ранее применялись на ВАЗ-1111; в настоящее время нашли применение на корейских автомобилях эконом-класса.

Стояночная тормозная система.

На большинстве современных легковых автомобилей применяют механический стояночный тормоз, представляющий собой рычаг и систему тросов.

Если задние тормоза барабанные, то тросы присоединяются к распоркам колодок. При наличии на задней оси дисковых механизмов, осуществить механический способ подключения стояночной тормозной системы сложно, поэтому часто применяют отдельные барабанные стояночные механизмы.

Проверка технического состояния тормозных систем. Для проверки стояночной системы в «гаражных» условиях рычаг затягивают до упора, включают первую передачу и плавно отпускают сцепление. Если система работает, то двигатель заглохнет. Проверка рабочей тормозной системы в «домашних» условиях малоэффективна. Ее начинают с осмотра. Оценивают уровень тормозной жидкости в бачке, проверяют систему на отсутствие подтеков жидкости. При нажатии педали тормоза во время движения, должны блокироваться все колеса. При этом автомобиль не должно вести в сторону, недопустимы вибрации педали тормоза и ее провалы, срабатывание тормоза не с первого «качка», появление посторонних скрипов и увеличение тормозного пути. Для более точной диагностики необходимо обращаться в сервисный центр. Полную проверку необходимо проводить не реже, чем через каждые 50000 км. Действие рабочей и запасной тормозных систем при воздействии на орган управления тормозной системы должно быть адекватным для водителя транспортного средства. Для проверки рабочей тормозной системы оценивают показатели эффективности торможения и устойчивости транспортного средства при торможении. Для проверки запасной, стояночной и вспомогательной тормозных систем оценивают эффективность торможения по наибольшим величинам тормозных сил. Объемы проверки тормозных систем на роликовых стендах или в дорожных условиях согласно таблицам.  Рабочая тормозная система транспортного средства должна обеспечивать выполнение нормативов эффективности торможения на стендах согласно таблице либо в дорожных условиях согласно таблице. Начальная скорость торможения при проверках в дорожных условиях - 40 км/ч. Масса транспортного средства при проверках не должна превышать технически допустимой максимальной массы. При проверках на стендах допускается относительная разность тормозных сил колес оси (в процентах от наибольшего значения) для осей транспортного средства с дисковыми колесными тормозными механизмами не более 20 процентов и для осей с барабанными колесными тормозными механизмами не более 25 процентов. В дорожных условиях при торможении рабочей тормозной системой с начальной скоростью торможения 40 км/ч транспортное средство не должно ни одной своей частью выходить из нормативного коридора движения шириной 3 м. Запасная тормозная система, снабженная независимым от других тормозных систем органом управления, должна обеспечивать соответствие нормативам показателей эффективности торможения транспортного средства на стенде согласно таблице, либо в дорожных условиях согласно таблице при начальной скорости торможения 40 км/ч.

 

83. Приводы рабочей тормозной системы, их сравнительная оценка.

Существуют различные виды тормозных приводов

а. Механический привод осуществляется при помощи тросов и рычагов. Из-за его малой эффективности и неудобства обслуживания в современном автомобилестроении практически не используется..

б. Пневматический привод в своей работе использует разрежение воздуха. В настоящее время распространен на грузовиках и автобусах.

в. Гидравлический привод приводится в действие благодаря жидкости на основе спирта, гликоля или силикона. Распространен повсеместно.

д. Комбинированный привод использует несколько типов энергоносителей и, ввиду своей сложности, не применяется без крайней необходимости.

В автоспорте нашел применение гидравлический тормозной привод. При его применении давление жидкости передается на задний контур поосевой тормозной системы или на задние магистрали диагональной системы (причем, в обход регулятора тормозных усилий). Гидравлический привод обладает большей эффективностью, чем механический, и позволяет точно дозировать усилие. Поэтому его используют для увода автомобиля в управляемый занос. Однако, эта система не подходит для повседневного использования, так как не позволяет оставить машину на длительной стоянке. Дело в том, что давление в системе постепенно снижается и колодки отпускаются.

 

84. Типы тормозных механизмов автомобиля ВАЗ-2110, их сравнительная оценка. Устройство и работа тормозных механизмов передних колес.

Автомобиль ВАЗ 211 оборудован двумя тормозными системами - рабочей и стояночной.

Рабочая тормозная система предназначена для снижения скорости движения автомобиля, вплоть до его полной остановки и кратковременного удержания автомобиля в неподвижном состоянии.

Рабочая тормозная система двухконтурная, диагональная, с гидравлическим приводом, состоит из главного тормозного цилиндра с вакуумным усилителем, четырех колесных тормозных механизмов и регулятором давления жидкости в задних тормозных механизмах. Тормозные механизмы передних колес дисковые, вентилируемые, задних - барабанные. Так в один контур входят тормозные механизмы переднего правого и заднего левого колес, а во второй - тормозные механизмы переднего левого и заднего правого колес. При выходе из строя одного из контуров, второй контур, хоть и с меньшей эффективностью, обеспечит остановку автомобиля. Регулятор давления ограничивает поступление тормозной жидкости в задние тормозные механизмы при недостаточной нагрузке на заднюю ось, тем самым, предотвращая блокировку задних колес и занос задней оси автомобиля при резком торможении. В корпусе регулятора тормозных сил имеется контрольное отверстие, закрытое пластмассовой заглушкой. Подтекание тормозной жидкости из этого отверстия свидетельствует о негерметичности колец регулятора тормозных сил. Для уменьшения усилия, прикладываемого водителем к педали тормоза, на главном тормозном цилиндре установлен вакуумный усилитель, работающий за счет использования разрежения, образующегося во впускном трубопроводе работающего двигателя. На корпусе главного тормозного цилиндра установлен бачок с тормозной жидкостью. В крышке бачка главного тормозного цилиндра установлен датчик. При опасном падении уровня тормозной жидкости в бачке, датчик включает контрольную лампу на щитке приборов.

Ручная тормозная система предназначена для предотвращения самопроизвольного движения автомобиля во время стоянки. Рычаг ручного тормоза двумя тросами связан с тормозными механизмами задних колес. При переведении рычага ручного тормоза в верхнее положение, рычаги, установленные на колодках поворачиваются и начинают давить на распорные планки. Тормозные колодки задних тормозных механизмов раздвигаются и фиксируют от проворачивания тормозной барабан.

В процессе эксплуатации ручной тормоз требует периодической регулировки. Это связано с износом накладок тормозных колодок и вытягиванием тросов привода. Ход рычага ручного тормоза должен составлять 2-4 щелчка. Если он меньше, необходимо увеличить длину привода, если больше - уменьшить.

 

85. Устройство и работа тормозных механизмов задних колес автомобиля КамАЗ-5320, их работа при торможении рабочей и стояночной тормозными системами.

Автомобили и автопоезда КамАЗ оборудованы четырьмя автономными тормозными системами: рабочей, запасной, стояночной и вспомогательной. Хотя эти системы имеют общие элементы, работают они независимо и обеспечивают высокую эф­фективность торможения в любых условиях эксплуатации. Кроме того, автомобиль оснащен при­водом аварийного растормаживания, обеспечиваю­щим возможность возобновления движения авто­мобиля (автопоезда) при автоматическом его тормо­жении из-за утечки сжатого воздуха, аварийной сигнализацией и контрольными приборами, позво­ляющими следить за работой пневмопривода.

Система тормозная рабочая предназначена для уменьшения скорости движения автомобиля или полной его остановки. Тормозные механизмы рабо­чей тормозной системы установлены на всех шести колесах автомобиля. Привод рабочей тормозной системы — пневматический двухконтурный, он при­водит в действие раздельно тормозные механизмы передней оси и задней тележки автомобиля. Управ­ляется привод ножной педалью, механически свя­занной с тормозным краном. Исполнительными органами привода рабочей тормозной системы яв­ляются тормозные камеры. Тормозные механизмы установлены на всех шести колесах автомобиля, основной узел тор мозного механизма смонтирован на суппорте, жестко связанном с фланцем моста. На эксцентрики осей, закрепленные в суппорте, свободно опи­раются две тормозные колодки с прикрепленными к ним фрикционными накладками, выполненными по серповидному профилю в соответствии с характе­ром их износа. Оси колодок с эксцентричными опор­ными поверхностями позволяют при сборке тормоз­ных механизмов правильно сцентрировать колодки относительно тормозного барабана. Тормозной бара­бан крепится к ступице колеса пятью болтами. При торможении колодки раздвигаются S-образ­ным кулаком и прижимаются к внутренней по­верхности барабана. Между разжимным кулаком и колодками установлены ролики, снижающие трение и улучшающие эффективность торможения. В отторможенное состояние колодки возвращаются четырьмя оттяжными пружинами.

Разжимной кулак вращается в кронштейне, прикрепленном к суппорту болтами. На этом кронш­тейне устанавливается тормозная камера. На конце вала разжимного кулака установлен регулировочный рычаг червячного типа, соединенный со штоком тормозной камеры при помощи вилки и пальца. Щиток, прикрепленный болтами к суппорту, защи­щает тормозной механизм от грязи.

Пневматичес­кий тормозной привод состоит из пяти контуров, разделенных одним двойным и одним тройным защитными клапанами. Контур II привода рабочих тормозных механиз­мов задней тележки состоит из части тройного защитного клапана; ресиверов общей вместимостью 40 л с кранами слива конденсата и датчиком падения давления в ресивере; части двухстрелочного манометра; верхней секции двух­секционного тормозного крана; клапана конт­рольного вывода (D) автоматического регулятора тормозных сил с упругим элементом; четырех тормозных камер; тормозных механизмов задней тележки (промежуточного и заднего мостов); трубо­проводов и шланга между этими аппаратами. В контур входит также трубопровод от верхней секции тормозного крана к клапану управления тор­мозными механизмами с двухпроводным приводом.

Контур III привода механизмов запасной и стоя­ночной тормозных систем, а также, комбинирован­ного привода тормозных механизмов прицепа (по­луприцепа) состоит из части двойного защитного клапана; двух ресиверов общей вместимостью 40 л с краном слива конденсата и датчиком падения давления в ресиверах; двух клапанов контрольного вывода (В и Е) ручного тормозного крана; ускорительного клапана; части двух­магистрального перепускного клапана; четырех пружинных энергоаккумуляторов тормозных ка­мер; датчика падения давления в магистрали пружинных энергоаккумуляторов; клапана уп­равления тормозными механизмами прицепа с двух­проводным приводом; одинарного защитного кла­пана; клапана управления тормозными ме­ханизмами прицепа с однопроводным приводом; трех разобщительных кранов трех соединитель­ных головок; головки типа А однопроводного привода тормозных механизмов прицепа и двух головок типа “Палм” двухпроводного привода тормозных механизмов прицепа; пневмоэлектрического датчика “стоп-сигнала”, трубопроводов и шлангов между этими аппаратами. Следует отме­тить, что пневмоэлектрический датчик в контуре установлен таким образом, что он обеспечивает включение ламп “стоп-сигнала” при торможении автомобиля не только запасной (стояночной) тор­мозной системой, но и рабочей, а также в случае выхода из строя одного из контуров последней.

86. Механизмы гидравлического тормозного привода рабочей тормозной системы, их назначение, общее устройство и работа привода.

Гидравлический тормозной привод автомобилей является гидростатическим, т. е. таким, в котором передача энергии осуществляется давлением жидкости. Принцип действия гидростатического привода основан на свойстве несжимаемости жидкости, находящейся в покое, передавать создаваемое в любой точке давление во все другие точки при замкнутом объеме.

Привод состоит из главного тормозного цилиндра, поршень которого связан с тормозной педалью, колесных цилиндров тормозных механизмов передних и задних колес, трубопроводов и шлангов, соединяющих все цилиндры, педали управления и усилителя приводного усилия.

Трубопроводы, внутренние полости главного тормозного и всех колесных цилиндров заполнены тормозной жидкостью. регулятор тормозных сил и модулятор антиблокировочной системы, при их установке на автомобиле, также входят в состав гидропривода.

При нажатии педали поршень главного тормозного цилиндра вытесняет жидкость в трубопроводы и колесные цилиндры. В колесных цилиндрах тормозная жидкость заставляет переместиться все поршни, вследствие чего колодки тормозных механизмов прижимаются к барабанам (или дискам). Когда зазоры между колодками и барабанами (дисками) будут выбраны, вытеснение жидкости из главного тормозного цилиндра в колесные станет невозможным. При дальнейшем увеличении силы нажатия на педаль в приводе увеличивается давление жидкости и начинается одновременное торможение всех колес.

Чем большая сила приложена к педали, тем выше давление, создаваемое поршнем главного тормозного цилиндра на жидкость и тем большая сила воздействует через каждый поршень колесного цилиндра на колодку тормозного механизма. Таким образом, одновременное срабатывание всех тормозов и постоянное соотношение между силой на тормозной педали и приводными силами тормозов обеспечиваются самим принципом работы гидропривода. У современных приводов давление жидкости при экстренном торможении может достигать 10–15 МПа.

При отпускании тормозной педали она под действием возвратной пружины перемещается в исходное положение. В исходное положение своей пружиной возвращается также поршень главного тормозного цилиндра, стяжные пружины механизмов отводят колодки от барабанов (дисков). Тормозная жидкость из колесных цилиндров по трубопроводам вытесняется в главный тормозной цилиндр.

 

87. Механизмы контура подготовки воздуха в пневматическом тормозном приводе, их назначение. Устройство и работа компрессора (на примере автомобиля КамАЗ).

Источником сжатого воздуха в приводе является компрессор. Компрессор, регулятор давления, предохранитель от замерзания конденсата, кон­денсационный ресивер составляют питающую часть привода, из которой очищенный сжатый воз­дух под заданным давлением подается в необходи­мом количестве в остальные части пневматического тормозного привода и к другим потребителям сжа­того воздуха. Сжатие воздуха для пневматического тормозного привода осуществляется компрессором, приводящимся в действие непосредственно от двигателя автомобиля. Максимальное давление, создаваемое компрессором, может достигать 1,5 МПа. Максимальное рабочее избыточное давление воздуха в ресиверах привода составляет 0,65–0,8 МПа и автоматически ограничивается регулятором давления. Атмосферный воздух имеет определенный процент влажности. При сжатии компрессором он нагревается, а при движении по трубопроводам и через аппараты привода — остывает. При этом из сжатого воздуха выделяется влага, которая ускоряет коррозию внутренних поверхностей системы, смывает смазку и, главное, может замерзнуть в трубопроводах и аппаратах при отрицательной температуре, что приведет к отказу тормозов. Для удаления влаги (очистки воздуха) в питающей части привода, до или после регулятора давления, устанавливают влагоотделители. Очистка сжатого воздуха от влаги в них осуществляется термодинамическим или адсорбционным способом. Третий способ защиты — перевод конденсата в состояние низкозамерзающей жидкости. Для этого в специальном аппарате — спиртонасытителе — при низких температурах окружающей среды в сжатый воздух вводят пары спирта, которые, смешиваясь с выделившейся влагой, образуют раствор (антифриз) с низкой температурой замерзания.

Четырехконтурный защитный клапан, разделяет привод на четыре, действующих независимо друг от друга, контура. Защитный клапан позволяет двигаться воздуху только в направлении к ресиверам, защищая запас воздуха в ресиверах при разгерметизации на участке аппаратов подготовки воздуха. Одновременно он защищает исправные контуры от неисправного в случае обрыва в одном из них, не позволяя выйти воздуху в атмосферу сразу из всех ресиверов привода. Одинарный защитный клапан отключает привод тягача в случае разрыва питающего трубопровода прицепа. На некоторых автомобилях вместо четырехконтурного применяют двойные или тройные защитные клапаны аналогичного назначения. Пройдя через четырехконтурный клапан, сжатый воздух заполняет ресиверы контуров.

 

88. Механизмы переднего контура рабочей тормозной системы с пневматическим приводом, их назначение, общее устройство и принцип работы контура.

Тормозная система выполнена многоконтурной. К контуру привода передних тормозных механизмов относятся: ресивер с запасом воздуха, одна из секций тормозного крана, модуляторы антиблокировочной системы (АБС) и тормозные камеры передних тормозных механизмов. Работой любого контура рабочей системы управляет одна секция тормозного крана. Тормозной кран — это следящий аппарат, через который воздух при торможении поступает из ресивера в рабочие аппараты. Он управляется тормозной педалью в кабине водителя. При растормаживании через тормозной кран воздух из привода выпускается в атмосферу. Регулятор тормозных сил и модулятор АБС корректируют давление воздуха в контурах при торможении.



Поделиться:


Последнее изменение этой страницы: 2021-03-09; просмотров: 133; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.135.219.166 (0.058 с.)