Системы очистки дымовых газов как элементная база создания новых технологий 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Системы очистки дымовых газов как элементная база создания новых технологий



 

Дымовые газы являются основным источником загрязнения от действия ТЭС. Содержание вредных веществ в них определяет не только состояние атмосферы, но во многом и состояние почвы и водного бассейна, влияет на жизнь флоры и фауны и, конечно, человека. Именно через атмосферные выбросы вокруг городов Ачинска, Назарово, Канска сложились ареалы техногенного изменения окружающей среды диаметром до 20...30 км, где сильно нарушена структура почв, растительности, био- и микроценозов [60]. Особенно тяжелая ситуация сложилась в крупных промышленных центрах Сибири. В г. Ачинске, например, только глиноземный комбинат выбрасывает в атмосферу ежегодно около 160 тыс. т пыли, 22 тыс. т сернистого газа, 14,5 тыс. т оксидов азота. Аналогичная обстановка и в Новокузнецке, Назарово, Прокопьевске, Кемерово и ряде других городов [60, 65, 92].

Из всей гаммы токсичных веществ, находящихся в дымовых газах, наибольшую опасность представляют зола, двуокись серы (SO2) и окислы азота (NOХ). Выбросы именно этих веществ регламентируются жесткими нормами (Лекция№1, табл.1).

Существуют разные способы и системы очистки дымовых газов. Часто (для золы всегда) это аппараты, устанавливаемые после конвективных поверхностей нагрева котлов.

Выбросы золы и очистка от них

Зола представляет из себя твердые частицы негорючих элементов угля. В основном - это оксиды кремния (SiO2), железа (Fe2O3), алюминия (Аl2O3), магния (MgO), кальция (СаО), серы (SO3) и некоторые другие, в том числе незначительное количество мышьяка и тяжелых металлов (свинец, ванадий, хром, цинк). Для разных углей элементарный состав золы может значительно отличаться друг от друга. Например, в КАУ (в отличие от каменных углей Кузнецкого бассейна) окись кальция является одним из основных компонентов, но даже и для КАУ содержание СаО колеблется от 26 до 42,5% в зависимости от месторождения и разреза [88].

Однако, основной параметр, характеризующий золовые частицы - это их размеры или дисперсность. Они колеблются в широких пределах - от десятых и сотых долей микрона до 100 мкм и более, и зависят от способа сжигания.

Следует отметить, что наибольшую опасность для человека представляют частицы размером 0,5...5 мкм, более крупные задерживаются в полости носа, более мелкие - выдыхаются. Содержание именно этого диапазона частиц в приземном слое атмосферы способствует возникновению у человека болезненных симптомов, вплоть до повышения смертности, (табл.1.4).

Аппараты золоочистки, точнее - уловители аэрозолей, и диапазон размеров улавливаемых ими частиц показан на рисунке 1.

Кроме представленных на рисунке, существует ряд перспективных пылеулавливающих устройств. К ним относятся: конденсационный пылеуловитель, в котором применены два механизма осаждения (во-первых, укрупнение частиц при конденсации на них паров из парогазовой смеси путем смешения очищаемых газов с паром, во вторых - частицы (при охлаждении парогазовой смеси) захватываются потоком пара, диффундирующим к центрам конденсации (каплям охлаждающей жидкости) или охлаждающим поверхностям. Таким способом можно осадить даже субмикронные частицы.

В другой установке водо-инерционного типа на орошение подается вода под давлением 240 бар с температурой около 205О С. Распыливаясь через сопло, она образует двухфазную среду: пар - жидкие капли, при этом капли разгоняются до 300 м/с, и, благодаря инерции, на них осаждаются частицы, в том числе и размером менее 1 мкм [15]. Перспективной сухой золоочисткой являются роторные зернистые фильтры. Они предназначены для очистки газов с температурами до 300О С от неслипаемой и слабослипаемой пыли. В качестве зернистого материала используются керамические и стеклянные шарики, крупнозернистый песок, отсевы щебенки и т.п. КПД такого фильтра может составлять 95...99,8% в зависимости от концентрации пыли в очищаемом газе, при этом концентрация пыли в очищенном газе не будет превышать 0,05...0,1 г/м3 [60].

Рис. 1. Аппараты для улавливания взвешенных частиц

 

В последнее время особое внимание уделяется возможностям золоуловителей подавлять окислы серы и азота путем ввода в орошающую воду разных добавок. В разных случаях (в зависимости от вида топлива, его качества, режима работы котла, типа присадок и способа их ввода и т.п.) можно снизить эти выбросы на 10...20%. [23, 30, 78] Правда, при этом стенки золоуловителей, как правило, подвергаются либо коррозии, либо отложениям и для защиты от этого требуют гуммирования (покрытие эластичным материалом). В этом случае, например, обычный циклон или циклон Вентури превращается в сложную и дорогую установку [78], при этом продукты, полученные в результате подавления, вместе с золой попадают в отвал, увеличивается щелочность или кислотность воды (для гидрозолоудаления) и, в целом, увеличивается вредное воздействие отвала на среду.

https://studbooks.net/1015550/ekologiya/sistemy_ochistki_dymovyh_gazov_elementnaya_baza_sozdaniya_novyh_tehnologiy

 

 

В последнее время особое внимание уделяется возможностям золоуловителей подавлять окислы серы и азота путем ввода в орошающую воду разных добавок. В разных случаях (в зависимости от вида топлива, его качества, режима работы котла, типа присадок и способа их ввода и т.п.) можно снизить эти выбросы на 10...20%. [23, 30, 78] Правда, при этом стенки золоуловителей, как правило, подвергаются либо коррозии, либо отложениям и для защиты от этого требуют гуммирования (покрытие эластичным материалом). В этом случае, например, обычный циклон или циклон Вентури превращается в сложную и дорогую установку [78], при этом продукты, полученные в результате подавления, вместе с золой попадают в отвал, увеличивается щелочность или кислотность воды (для гидрозолоудаления) и, в целом, увеличивается вредное воздействие отвала на среду.

2.3 Методы химической очистки дымовых газов Выбросы серы и очистка от них

Твердое топливо может содержать серу в следующих формах: колчедана Fe2S и пирита FeS2 в составе молекул органической части топлива и в виде сульфатов в минеральной части. Соединения серы в результате горения превращаются в оксиды серы, причем около 99% составляет сернистый ангидрид SO2, остальная часть выделяется в виде триоксида серы SO3 либо сульфатов СаSO4.

 

Наиболее распространенными методами сероочистки являются следующие:

 

· мокрый известняковый (известковый) способ [23, 34, 95, 101,103];

 

· мокро-сухой способ [6, 30, 34];

 

· магнезитовый циклический способ [10, 33];

 

· аммиачно-циклический способ [7, 78];

 

· сухой известняковый (аддитивный) способ [27, 34].

 

В их основе лежит использование реагента для связывания оксидов серы. В качестве такого вещества чаще всего выступает известняк СаСО3 (карбонат кальция) или известь Са(ОН)2 (гидрат оксида кальция), так как они являются наиболее дешевыми щелочными реагентами. КПД сероподавления лежит в пределах 80...90% при разнице в затратах для “мокрых” способов (с учетом эксплуатационных издержек) на уровне 20% [10].

 

При относительно равных возможностях сероподавления и равных затратах на производство и эксплуатацию вид, сероочистки должен определяться как свойствами используемого угля, так и свойствами его золы. Для КАУ, например, при высоком содержании Са в золе, неприемлемы “мокрые” способы сероподавления из-за образования в аппаратах сероочистки трудноудаляемых отложений гипса. В то же время, “сухой” известняковый способ является наиболее простым и требует минимальных капиталовложений.

 

Сущность способа заключается в добавлении к сжигаемому топливу известняка или доломита в количестве, примерно в два раза превышающем стехиометрически содержание серы в исходном топливе. В топке под воздействием температуры известняк диссоциирует на углекислоту и оксид кальция, а последний взаимодействует с сернистым ангидридом:

 

CaCO3t®CaO+CO2

 

CaO+SO2+1/2O2 ®CaSO4

 

В результате образуется сульфат кальция, который вместе с золой улавливается в золоуловителях. В канадской энергосистеме ONTARIO HYDRO на основе этого способа разработана технология SONOX [27] для одновременного снижения выбросов окислов серы и азота при КПД сероподавления - 80%, азотоподавления - 90%.

Выбросы азота и очистка от них

Источником оксидов азота на ТЭС является молекулярный азот воздуха и азотосодержащие компоненты топлива. Первые часто называют "термические", вторые - "топливные" оксиды азота.

Совокупность явлений, происходящих при окислении азота воздуха, может быть описана на основании теории Н.Н.Семенова - Я.Б.Зельдовича - Д.А.Франк-Каменецкого [59, 106]. Условием окисления азота воздуха является диссоциация молекулы кислорода воздуха под действием высоких температур (более 1473 К), идущая с поглощением теплоты:

 

О2<=>О+О-495 кДж/моль.

 

Атомарный кислород реагирует с молекулой азота, а образовавшийся в результате эндотермической реакции атомарный азот вступает в экзотермическую реакцию с молекулярным кислородом:

N2O<=>NO+N-314 кДж/моль;

O2+N=NO+O+134 кДж/моль;

N2+O2=2NO-180 кДж/моль.

В последние 5...8 лет вопросам образования оксидов азота уделялось большое внимание [29, 49, 53, 55, 59, 78, 86, 132]. Кроме “топливных” и “термических” оксидов в зоне температур ниже 1800 К (за пределами ядра факела) образуются “быстрые” оксиды азота. Их содержание во многом определяет минимальный выход оксида азота в зоне горения [97-99]. “Топливные” оксиды образуются на начальном участке факела при температурах около 1000 К. При этом, относительно большое влияние “топливных” оксидов азота имеет место в котлах малой мощности, для которых температуры в ядре факела невысоки и образование “термических” оксидов по этой причине незначительно.

Методы химической очистки газов от NOХ бывают:

· окислительные, основанные на окислении оксида азота в диоксид с последующим поглощением различными поглотителями;

· восстановительные, основанные на восстановлении оксида азота до азота и кислорода с применением катализаторов;

· сорбционные, основанные на поглощении оксидов азота различными сорбентами (цеолитами, торфом, коксом, водными растворами щелочей и др.).

Применительно к очистке дымовых газов котлов наиболее перспективны восстановительные методы. Один из них - метод восстановления с помощью аммиака. Этот метод основан на взаимодействии аммиака с оксидами азота при определенных температурах по следующим основным реакциям:

4NO+4NH3+O2®4N2+6H2O;

6NO+8NH3®7N2+12H2O.

При высоких температурах (900...1100О С) они протекают без катализаторов. Дозирование аммиака осуществляется в зависимости от режимов работы котла, чтобы исключить его проскок в атмосферу (на практике полностью исключить проскок аммиака не удается и он может составлять 3,8 мг/м3 [25]). При более низких температурах (573...723 К) реакция разложения оксидов азота протекает только в присутствии катализатора. В качестве катализаторов используются оксиды различных металлов (титан, хром, ванадий). Они наносятся на элементы с развитой поверхностью, выполненные в виде сот, гранул или пластин.

В связи с опасностью использования аммиака (высокая токсичность), и необходимостью специальных мер защиты персонала, за рубежом, в частности в Германии [25], проходят промышленные испытания установки с использованием вместо аммиака карбамида, по другому мочевины (NH2)2СО. Степень восстановления оксидов азота достигает 80...90%.

Следует отметить, что в последнее время наибольшее внимание уделяется таким методам, которые позволяют одновременно снижать выбросы не только оксидов азота, но и серы. В этом направлении изучаются возможности традиционных способов очистки и ведутся работы по созданию новых и в нашей стране и за рубежом.

Обобщая обзор по химическим методам очистки дымовых газов имеет смысл отметить присущие им недостатки, в связи с чем, они не могут считаться безусловно перспективными:

· сложность, а подчас и громоздкость агрегатов, так как, почти во всех случаях, химическая очистка - это сложное производство, требующее не только специального оборудования, но и специальной квалификации обслуживающего персонала;

· высокая агрессивность рабочих сред и, как следствие, коррозионно-эррозионный износ даже легированных сталей марок Х15, Х18Н10Т, Х17Н13М2Т и т.п.;

· наличие трудноудаляемых отложений в трубках, тройниках, коленах, переходах и т.п.;

· ненадежная работа арматуры;

· по вышеназванным причинам, ненадежная работа установок в целом;

· дороговизна.

Следует отметить, что утилизация выбросов дымовых газов в виде серной и азотной кислот, аммонийных удобрений ((NH4)2 SO4 - сульфат аммония и NH4NO3 - аммиачная селитра), гипса или других продуктов не может рассматриваться как безусловное достоинство современных методов очистки еще и по экономическим причинам, кроме вышеперечисленных. Достоинством, скорее, является возможность такой утилизации.

В условиях роста потребления твердых ископаемых топлив, по комплексу экономических, технологических, экологических и физико-химических свойств, следует считать перспективным использование КАУ, в том числе и в крупных городах на ТЭЦ.

В условиях высокого загрязнения окружающей среды, сложившихся в крупных промышленных регионах, необходимо создание новых технологий сжигания угля удовлетворяющих жестким экологическим требованиям.

Химические методы очистки дымовых газов не могут считаться безусловно перспективными из-за большого количества недостатков.

Из-за высокого содержания в золе КАУ кальция (до 43% [88]), при использовании химических методов очистки дымовых газов от сернистого ангидрида, следует отдавать предпочтение “сухим” методам очистки.

Оптимальной золоочисткой для КАУ можно считать комбинацию циклона с электрофильтром, при условии, что КПД этих устройств обеспечит суммарный выброс аэрозолей £50 мг/м3.

https://www.kazedu.kz/referat/111469/1

 

 

Очистка дымовых газов: методы и оборудование

Что такое дымовые газы

Дымовыми газами называются продукты горения, которые выделяются в процессе сожжения органического топлива — нефти, газа, каменного и древесного угля.

Правовая сторона ограничения выбросов дымовых газов в атмосферу

Большинство государств регулирует количество выбросов дымовых газов в атмосферу, устанавливая предельно допустимую концентрацию (ПДК) для основных продуктов загрязнения.

Стоит отметить, что ПДК регулярно уменьшается и к 2050 году планируется свести загрязнение к величинам, близким к нулю.

Основные положения по очистке воздуха в России содержатся в Федеральном законе N 96-ФЗ «Об охране окружающей среды» от 04.05.1999, а также в ГОСТ 17.2.3.02-2014 и ГОСТ 12.1.005-88. Предельно допустимая концентрация прописана в СанПиН 2.1.6.1032-01.

Основные типы загрязнений в дымовом газе

Основные типы загрязнения, выделяющиеся в процессе горения:

· Летучая зола — мелкие частицы несгораемого остатка, состоящие из минеральных примесей, которые были в исходном топливе. Количество золы в дымовых газах варьируется от типа топлива — в мазуте содержание, как правило, 0.05-0.15%, в дровах от 0.5% до 2%, в каменном угле содержание золы варьируется от 1 до 50%, в торфе от 3 до 30%, а в горючих сланцах от 50 до 80% золы. Чем больше процент содержания золы в топливе, тем больше золы образуется в процессе горения. Следовательно, от используемого типа топлива зависит и выбор очистительных систем для дымовых газов.

· Оксиды серы (SO2) и азота (NO и NO2) — в воздухе соединяются с парами воды и в ходе фотохимической реакции образуют кислоту, которая оседает на землю в виде кислотных дождей.

· Тяжелые металлы — группа элементов таблицы Менделеева, обладающие свойством токсичности. Стоит оговорится, что термин «тяжелые металлы» охватывает достаточно широкую группу элементов, и используется, как правило, в контексте вредности для здоровья. С технической точки зрения, к тяжелым металлам причисляют элементы с плотностью выше плотности железа (8 г/см2). На практике, чаще всего термин «тяжелые металлы» применяется к свинцу, ртути и кадмию.

Основные источники загрязнения дымовыми газами

Основными источниками загрязнения атмосферы дымовыми газами на сегодняшний день являются предприятия энергетической сферы — тепловые электростанции и котельные, работающие на ископаемом топливе: каменном угле, природном газе, мазуте и т.д.

Кроме того, дымовые газы выбрасывают:

· Нефтяные факелы, сжигающие попутный газ;

· Промышленные предприятия;

· Автотранспорт с ДВС.

Методы очистки дымовых газов

Сразу отметим, что универсального метода очистки воздуха от дыма и прочих типов загрязнения не существует, поэтому приходится комбинировать методы для достижения максимального эффекта.

Способы очистки дымового газа от золы и твердых частиц

Фильтрование:

Рукавные тканевые фильтры — представляют из себя цилиндрические емкости, в которых расположены вертикально подвешенные тканевые мешки. Частицы золы в дымовом газе, проходя через ткань, застревают. Очищенный воздух выводится через трубу в верхней части емкости. Для очистки рукавов от золы их периодически встряхивают. Зола собирается в отстойнике. Рукавные тканевые фильтры для очистки воздуха от дыма улавливают до 99.9% золы.

Электростатические фильтры — в таких устройствах поток загрязненного воздуха проходит через электрическое поле, после чего частицы оседают на электродах под действием электростатического поля обратной полярности. Кольцевые эмульгаторы — в основе работы таких очистителей лежит эмульгационный способ мокрой очистки, который во многом схож с принципом работы скруббера, но имеет свои нюансы.

Кольцевой эмульгатор представляет из себя вертикальную емкость, внутри которой находится вращающаяся тарелкообразная насадка. Дымовой газ поступает через патрубки внизу емкости, расположенные под углом. Как результат — загрязненный газ завихряется. Контактируя с жидкостью на тарелке, газ образует с водой газожидкостную эмульсию, которая накапливается под тарелкой. После выключения аппарата, образуется противоток газ-жидкость —шлам стекает через отверстие в основании рабочей камеры, а очищенный газ выходит через выходной газоход.

Скрубберы — аппараты для мокрой очистки дымовых газов. Представляют из себя вертикальные емкости, внутри которых располагаются различные приспособления для мокрой очистки (форсунки для разбрызгивания воды, различные насадки, устройства для дробления воды газовым потоком). Дым промывается и очищается водой, вся сажа остается с водой, которая утекает в отстойник, очищенный же газ выводится в атмосферу через патрубок в верхней части скруббера.

Способы очистки дымового газа от оксидов серы

Для очистки дымовых газов от оксидов серы применяются 3 технологии: мокрая, мокросухая и сухая очистка. В основе каждого способа очистки лежит принцип сорбции — оксиды серы соединяются с камим-либо активным веществом, образуя либо осадок, либо безвредное вещество.

Мокрая сероочистка

Используется при высокой концентрации в серы в исходном топливе (от 2 до 4%), обеспечивает уровень очистки в 95-99% в зависимости от используемого сорбента.

В качестве сорбента используются используются:

· Суспензия извести

· Соединения аммиака

· Суспензия доломита

· Кальцинированная вода

· Морская вода

· Сточные воды

· Карбонат натрия

Сероочистка при мокром способе очистки происходит в скруббере.

Сухая очистка

Технология сухой сероочистки основывается на использовании различных сухих сорбентов — чаще всего используется сухой известняк, который вводят непосредственно в топку. В ходе кальцинирования известняка выделяется известь, которая связывает серные соединения, тем самым не давая им попасть в дымовые газы.

Такой способ очистки позволяет улавливать до 99% оксидов серы.

Мокросухая чистка

При таком методе сероочистки в поток дымового газа вводится жидкий абсорбент (чаще всего — суспензия извести), вода испаряется, а известь связывает оксиды, образуя сульфаты и сульфиды кальция, которые впоследствии улавливаются рукавными или электростатическими фильтрами.

Мокросухая очистка обеспечивает до 98% улавливания оксидов серы.

Каталитические способы очистки дымового газа от оксидов азота

Для очистки дымовых газов от оксидов азота используются две основные технологии:

· Селективное каталитическое восстановление NOx (используется аббревиатура СКВ)

· Селективное некаталитическое восстановление NOx (используется аббревиатура СНКВ)

В основе обеих технологий лежит реакция восстановления NOx при помощи аммиака или его производных (мочевина, соли аммония) до образования азота и воды.

При использовании СКВ очистка проводится на поверхности гетерогенных катализаторов при рабочей температуре 200-500 градусов Цельсия.

В случае технологии СНКВ процесс очистки проходит в газовой камере, при рабочей температуре свыше 800 градусов по Цельсию

В обоих случаях катализаторы представляют собой пластины с нанесенной на них каталитической массой или же соты, где каталитическое вещество нанесено на подложку сот. В роли каталитического вещества используется оксид ванадия в смеси с оксидом титана или оксидом алюминия.

Про мокрые способы очистки газов от оксидов азота можно почитать здесь.

https://gas-cleaning.ru/article/ochistka-dymovyh-gazov-metody-i-oborudovanie

 

 



Поделиться:


Последнее изменение этой страницы: 2021-01-08; просмотров: 353; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.17.68.14 (0.056 с.)