Выбор источника синхронизации на основе SSM 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Выбор источника синхронизации на основе SSM



Алгоритм выбора источника синхронизации на основе SSM и включает следующие процедуры:

• считывание сообщений об уровне качества всех доступных источников синхронизации;

• сортировку источников синхронизации в соответствии с уровнем качества;

• сортировку источников с высшим качеством по уровню приоритета;

• выбор источника высшего уровня качества и высшего приоритета;

 

Таблица 7.1 – Сообщения о статусе синхронизации

 

• передачу сообщения «DNU» (не использовать для синхронизации) в направлении используемого источника синхронизации и передачу сообщения об уровне качества выбранного источника в другие направления.

Рассмотрим процессы автоматической реконфигурации цепей синхронизации на примере схемы, приведенной на рис.7.7.

 При отсутствии аварии синхронизация сетевых элементов осуществляется от ПЭГ (рис. 7.7а).

Сетевой элемент СЭ1 работает в режиме внешней синхронизации по опорному сигналу первого приоритета, поступающему от ПЭГ. В исходящих потоках STM-N передаются сообщения «PRC».

Рисунок 7.7 - Реконфигурация участка сети синхронизации при пропадании сигнала от ПЭГ

Сетевые элементы СЭ2 и СЭ3 работают в режиме линейной синхронизации.

Для предотвращения образования петли синхронизации в исходящих сигналах STM-N стороны «Запад» передаются сообщения «DNU» - «не использовать для синхронизации».

Блок ВЗГ работает в режиме внешней синхронизации по опорному сигналу, выделенному из входящего сигнала STM-N стороны «Запад» сетевого элемента СЭ4.

Сетевой элемент СЭ4 работает в режиме внешней синхронизации от ВЗГ. В исходящих сигналах STM-N передаются сообщения «SSU».

При повреждении синхротрассы и пропадании сигнала от ПЭГ начинается процесс реконфигурации сети синхронизации (рис. 7.7б).

  Сетевой элемент СЭ1обнаруживает пропадание сигнала от ПЭГ ипереходит в режим удержания, поскольку сигнал второго приоритета несет сообщение «DNU». При этом в байтах S1 исходящих сигналов STM-N передаются сообщения «SEC».

Сетевой элемент СЭ2продолжает работать в режиме линейной синхронизации с линии «Запад» и передает в направлении «Восток» сообщение «SEC», соответствующее качеству опорного сигнала, а в направлении «Запад» - сообщение «DNU» для предотвращения образования петли синхронизации.

Сетевой элемент СЭ3 выбирает в качестве действующего синхросигнал второго приоритета с линии «Восток», поскольку уровень качества сигнала первого приоритета с линии «Запад» оказывается ниже.

Для предотвращения образования петли синхронизации в исходящем потоке направления «Восток» передается сообщение «DNU».

Сетевой элемент СЭ4обнаруживает в линейном сигнале STM-N стороны «Запад» сообщение DNU и отключает выходной сигнал внешней синхронизации, поступавший на ВЗГ. В результате предотвращается образование петли синхронизации между элементами СЭ3, СЭ4 и ВЗГ.

Блок ВЗГпри пропадании внешнего синхросигнала с первым приоритетом и отсутствии других синхросигналов переходит в режим удержания.

Сетевой элемент СЭ4продолжает синхронизироваться от ВЗГ, поскольку опорный сигнал от ВЗГ имеет первый приоритет и достаточно высокое качество. В исходящих сигналах STM-N передаются сообщения SSU.

На завершающем этапе реконфигурации системы синхронизации сетевые элементы СЭ2 и СЭ1 выбирают для синхронизации сигнал второго приоритета с более высоким уровнем качества и последовательно переходят в режим линейной синхронизации по сигналуВЗГ, выделяемому из входящих сигналов STM-N стороны «Восток».

Таким образом, после обнаружения аварии система синхронизации изменилась так, что все сетевые элементы синхронизируются от ВЗГ (рис. 7.7в).

После восстановления синхротрассы между ПЭГ и СЭ1 на входе внешней синхронизации сетевого элемента СЭ1 появляется опорный сигнал с уровнем качества PRC. Сетевой элемент СЭ1 выбирает этот сигнал в качестве действующего синхросигнала. При этом сообщение «DNU» с направления «Восток» заменяется на «PRC».

Сетевые элементы СЭ2 и СЭ3 последовательно переключаются на синхросигнал первого приоритета «PRC», получаемый с направления «Запад», и заменяют в исходящих потоках STM-N сообщения «DNU» на «PRC».

Сетевой элемент СЭ4 обнаруживает отсутствие сообщения «DNU» во входящем сигнале STM-N направления «Запад» и переключается на использование этого сигнала в качестве опорного для выхода внешней синхронизации.

Блок ВЗГ при появлении сигнала PRC с первым приоритетом переходит из режима удержания в режим внешней синхронизации.

Таким образом, система синхронизации автоматически возвращается в исходное состояние, существовавшее до появления аварии (рис8.28а).

 

Примеры синхронизации сети SDH

 

Пример синхронизации кольцевой сети SDH

Основным требованием при формировании сети синхронизации является наличие основных и резервных путей распространения сигнала синхронизации. Однако, и в том и в другом случае должны строго выдерживаться топология иерархического дерева и отсутствовать замкнутые петли синхронизации. Другим требованием является наличие альтернативных хронирующих источников. Идеальная ситуация, когда альтернативные источники проранжированы в соответствии с их приоритетом и статусом.

При аккуратном формировании сетевой синхронизации можно избежать возникновения замкнутых петель синхронизации как в кольцевых, так и в ячеистых сетях. Использование сообщений о статусе синхронизации позволяет в свою очередь повысить надежность функционирования сетей синхронизации. На рис. 7.8 приведена схема синхронизации кольцевой сети SDH, где верхняя схема соответствует нормальному функционированию сети, а нижняя - сбою, вызванному разрывом кабеля между узлами В и С.

Схема использует ставший классическим иерархический метод принудительной синхронизации. Один из узлов (узел А) назначается ведущим (или мастер-узлом) и на него подается сигнал синхронизации от внешнего PRC. От этого узла основная синхронизация (источник первого приоритета) распределяется в направлении против часовой стрелки, т.е. к узлам В, С и D. Синхронизация по резервной ветви (источник второго приоритета) распределяется по часовой стрелке, т.е. к узлам D, С и В. Начальное распределение хронирующих источников по узлам сведено в таблицу 7.2.

При разрыве кабеля между узлами В и С узел С, не получая сигнала синхронизации от узла В, переходит в режим удержания синхронизации и посылает узлу D сообщение о статусе SETS уровня качества синхронизации. Узел D, получив сообщения об уровне качества синхронизации от А и С и выбрав лучший (от А), посылает узлу С сообщение "PRC" вместо "Don't use". Узел С, получив это сообщение от узла D, изменяет источник синхронизации на "PRC" от D.

Пример синхронизации ячеистой сети SDH

Рассмотрим пример формирования цепей синхронизации в ячеистой сети SDH. Сеть имеет 12 узлов и несложную транспортную топологию звезды, включающую несколько линейных участков, связанных через узлы концентраторов.

а)

б)

 

Рисунок 7.8 – Схема синхронизации кольцевой сети: а) при нормальном функционировании, б) при обрыве связи

 

Таблица 7.2 – Распределение источников синхронизации кольцевой сети

 

Для облегчения задачи построения сети синхронизации схема разбивается на несколько цепей синхронизации, учитывая при этом особенности топологии исходной транспортной сети. Полученные цепи: W, X, Y, Z - показаны в нижней части рис. 7.8. Цифрами 1 и 2 на этом рисунке показаны приоритеты в использовании сигналов синхронизации. Сплошной линией показаны основные каналы синхронизации, пунктиром - резервные каналы синхронизации. Мастер-узлы заштрихованы.

Для распределения синхрони­зации используется та же иерархическая схема. Каждая цепь синхронизации может быть обеспечена одним или двумя узлами, получающими синхронизацию от внешних источников (PRC). Эти узлы называют мастер-узлами. Источник PRC, расположенный на основной станции, является внешним PRC, от которого получают синхронизацию два мастер-узла W и X цепей W и X. Цепи Y и Z имеют общий мастер-узел Y&Z, который получает сигнал синхронизации от последнего узла цепи X. Суть предложенного решения состоит в организации альтернативного пути передачи сигнала синхронизации в каждой цепи. Проблемы могут возникнуть только при низкой надежности связи, обеспечивающей синхронизацию мастер-узлу Y&Z. В этом смысле для этого мастер-узла логично использовать локальный первичный эталон LPR.

 

Рисунок 7.9 – Схема синхронизации ячеистой сети

 


Лекция №8



Поделиться:


Последнее изменение этой страницы: 2020-11-23; просмотров: 223; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.117.182.179 (0.013 с.)