Функциональные задачи модулей сетей SDH 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Функциональные задачи модулей сетей SDH



 

Опишем основные элементы системы передачи данных на основе SDH, или функциональные модули SDH. Эти модули могут быть связаны между собой в сеть SDH. Логика работы или взаимодействия модулей в сети определяет необходимые функциональные связи модулей - топологию, или архитектуру сети SDH.

Сеть SDH, как и любая сеть, строиться из отдельных функциональных модулей ограниченного набора: мультиплексоров, коммутаторов, концентраторов, регенераторов и терминального оборудования. Этот набор определяеться основными функциональными задачами, решаемыми сетью:

· сбор входных потоков через каналы доступа в агрегатный блок, пригодный для транспортировки в сети SDH - задача мультиплексирования, решаемая терминальными мультиплексорами - ТМ сети доступа;

· транспортировка агрегатных блоков по сети с возможностью ввода/вывода входных/выходных потоков - задача транспортирования, решаемая мультиплексорами ввода/вывода - ADM, логически управляющими информационным потоком в сети, а физически - потоком в физической среде, формирующей в этой сети транспортный канал;

· перегрузка виртуальных контейнеров в соответствии со схемой маршрутизации из одного семента сети в другой, осуществляемая в выделенных узлах сети, - задача коммутации, или кросс-коммутации, решаемая с помощью цифровых коммутаторов или кросс-коммутаторов - DXC;

· объединение нескольких однотипных потоков в распределительный узел - концентратор (или хаб) - задача концентрации, решаемая концентраторами;

· восстановление (регенерация) формы и амплитуды сигнала, передаваемого на большие растояния, для компенсации его затухания - задача регенерации, решаемая с помощью регенераторов;

· сопряжение сети пользователя с сетью SDH - задача сопряжения, решаемая с помощью оконечного оборудования - различных согласующих, устройств, например, конверторов интерфейсов, конверторов скоростей, конверторов импедансов и т.д.

Функциональные модули сетей SDH

Мультиплексор.

Основным функциональным модулем сетей SDH является мультиплексор. Мультиплексоры SDH выполняют как функции собственно мультиплексора, так и функции устройств терминального доступа, позволяя подключать низкоскоростные каналы PDH иерархии непосредственно к своим входным портам. они являются универсальными и гибкими устройствами, позволяющие решать практически все перечисленные выше задачи, т.е. кроме задачи мультиплексирования выполнять задачи коммутации, концентрации и регенерации. Это оказываеться возможным в силу модульной конструкции SDH мультиплексора - SMUX, при которой выполняемые функции определяются лишь возможностями системы управления и составом модулей, включённых в спецификацию мультиплексора. Принято, однако, выделять два основных типа SDH мультиплексора: терминальный мультиплексор и мультиплексор ввода/вывода.

Терминальный мультиплексор TM является мультиплексором и оконечным устройством SDH сети с каналами доступа, соответствующим трибам доступа PDH и SDH иерархии (рис.5.1). Терминальный мультиплексор может либо вводить каналы, т.е. коммутировать их со входа трибного интерфейса на линейный выход, или выводить каналы, т.е. коммутировать с линейного входа на выход трибного интерфейса.

Мультиплексор ввода/вывода ADM может иметь на входе тот же набор трибов, что и терминальный мультиплексор (рис.5.1). Он позволяет вводить/выводить соответствующие им каналы. Дополнительно к возможностям коммутации, обеспечиваемым ТМ, ADM позволяет осуществлять сквозную коммутацию выходных потоков в обоих направлениях, а также осуществлять замыкание канала приёма на канал предачи еа обоих сторонах ("восточный" и "западный") в случае выхода из строя одного из направлений. Наконец, он позволяет (в случае аварийного выхода из строя мультиплексора) пропускать основной оптический поток мимо него в обходном режиме. Всё это даёт возможность использовать ADM в топологиях типа кольца.

 

 

Рисунок 5.1 - Синхронный мультиплексор (SMUX): терминальный мультиплексор ТМ или мультиплексор ввода/вывода ADM.

 

Регенератор представляет собой вырожденный случай мультиплексора, имеющего один входной канал - как правило, оптический триб STM-N и один или два агрегатных выхода (рис. 5.2). Он используется для увеличения допустимого растояния между узлами сети SDH путём регенерации сигналов полезной нагрузки. Обычно это растояние составляет 15 - 40 км. для длины волны порядка 1300 нм или 40 - 80 км. - для 1500 нм.

Рисунок 5.2 - Мультиплексор в режиме регенератора

 

Концентраторы

Концентратор (хаб) используется в топологических схемах типа "звезда", представляет собой мультиплексор, объединяющий несколько, как правило однотипных (со стороны входных портов) потоков, поступающих от удаленных узлов сети в один распределительный узел сети SDH, не обязательно также удаленный, но связанный с основной транспортной сетью.

Этот узел может также иметь не два, а три, четыре или больше линейных портов типа STM-N или STM-N-1 (рис. 5.3) и позволяет организовать ответвление от основного потока или кольца (рис. 5.3а), или, наоборот, подключение двух внешних ветвей к основному потоку или кольцу (рис.5.3) или, наконец, подключение нескольких узлов ячеистой сети к кольцу SDH (рис. 5.3в). В общем случае он позволяет уменьшить общее число каналов, подключенных непосредственно к основной транспортной сети SDH. Мультиплексор распределительного узла в порте ответвления позволяет локально коммутировать подключенные к нему каналы, давая возможность удаленным узлам обмениваться через него между собой, не загружая трафик основной транспортной сети.

Коммутатор. Физически возможности внутренней коммутации каналов заложены в самом мультиплексоре SDH, что позволяет говорить о мультиплексоре как о внутреннем или локальном коммутаторе. На рис. 5.4, например, менеджер полезной нагрузки может динамически изменять логическое соответствие между трибным блоком TU и каналом доступа, что равносильно внутренней коммутации каналов. Кроме этого, мультиплексор, как правило, имеет возиожность коммутировать собственные каналы доступа, (рис. 5.5), что равносильно локальной коммутации каналов. На мультиплексоры, например, можно возложить задачи локальной коммутации на уровне однотипных каналов доступа, т.е. задачи, решаемые концентраторами (рис. 5.5).

В общем случае приходиться использовать специально разработанные синхронные коммутаторы - SDXC, осуществляющие не только локальную, но и общую или проходную (сквозную) коммутацию высокоскоростных потоков и синхронных транспортных модулей STM-N (рис.5.6).

 


а)

 

 

 


б)

в)

 

Рисунок 5.3 – Синхронный мультиплексор в режиме концентратора

 

Важной особенностью таких коммутаторов является отсутствие блокировки других каналов при коммутации, когда коммутация одних групп TU не накладываетограничений на процесс обработки других групп TU. такая коммутация называется неблокирующей.

 

Рисунок 5.4 - Мультиплексор ввода/вывода в режиме внутреннего коммутатора.

 

Рисунок 5.5 - Мультиплексор ввода/вывода в режиме локального коммутатора.

Рисунок 5.6 - Общий или проходной коммутатор высокоскоростных каналов

 

Можно выделить шесть различных функций, выполняемых коммутатором:

---маршрутизация (routing) виртуальных контейнеров VC, проводимая на основе использования информации в маршрутном заголовке ROH соответствующего контейнера;

---консолидация или объединение (consolidation/hubbing) виртуальных контейнеров VC, проводимая в режиме концентратора/хаба;

---трансляция (translation) потока от точки к нескольким точкам, или к мультиточке, осуществляемая при использовании режима связи "точка - мультиточка";

---сортировка или перегрупировка (drooming) виртуальных контейнеров VC, осуществляемая с целью создания несколких упорядоченных потоков VC из общего потока VC, поступающего на коммутатор;

---доступ к виртуальному контейнеру VC, осуществляемый при тестировании оборудования;

---ввод/вывод (drop/insert) виртуальных контейнеров, осуществляемый при работе мультиплексора ввода/вывода;

 

Линейные тракты СЦИ

Линейный тракт СЦИ - это совокупность технических средств, обеспечивающих транспортирование сигналов STM-N между двумя последовательными синхронными мультиплексорами или кросс-коммутаторами.

Для линейных трактов СЦИ характерны следующие особенности:

• в качестве физической среды в линейных трактах СЦИ в основном используются одномодовые волоконно-оптические (ВО) линии и радиолинии;

• параметры волоконно-оптических линейных трактов (ВОЛТ) определены таким образом, чтобы обеспечивались поперечная совместимость, т.е. возможность использования на концах одной оптической секции аппаратуры разных фирм, а также продольная совместимость, т.е. возможность работы волоконно-оптических линейных трактов СЦИ и ПЦИ в одном кабеле;

• внутристанционные соединения для сигналов STM-1 могут выполняться с помощью коаксиального кабеля;

• в линейном тракте реализуются некоторые функции преобразования сигналов, а также расширенные функции контроля и управления.

Состав волоконно-оптического линейного тракта.

Эталонная конфигурация волоконно-оптического линейного тракта СЦИ приведена на рис. 5.7.

 

Рисунок 5.7 - Эталонная конфигурация волоконно-оптического линейного тракта СЦИ

 

На рис.5.7 отмечены эталонные точки C, S и R, в которых производится нормирование основных параметров линейного тракта:

- точка С - вход/выход функционального блока окончания регенерационной секции RST; эти блоки обрамляют регенерационную секцию и входят в ее состав;

- точка S - вход оптического волокна;

- точка R- выход оптического волокна.

Поскольку по определению волоконно-оптический линейный тракт СЦИ обеспечивает транспортирование сигналов STM-N между эталонными точками С двух последовательных синхронных мультиплексоров или кросс-коммутаторов, то он включает в себя оконечные части мультиплексоров: функциональные блоки окончаний регенерационных секций RST и физических интерфейсов SPI, оптические секции OS и промежуточные регенераторы.

Преобразование сигналов в ВОЛТ

В начале линейного тракта на вход функционального блока RST поступает сигнал STM-N, в котором не определены байты заголовка регенерационной секции RSOH. Этот заголовок создается и вводится в цикл STM-N в блоке RST.

Полностью сформированный цикл STM-N, за исключением байтов первой строки RSOH, скремблируется.

По скремблированному циклу STM-N в передающей части блока RST вычисляется код BIP-8, который передается в байте В1 следующего цикла и используется для контроля ошибок в регенерационной секции.

Скремблированный электрический сигнал STM-N в коде NRZ поступает на вход блока SPI, где он преобразуется в оптический сигнал STM-N и передается в оптическую секцию в коде NRZ.

В приемной части регенератора сигнал STM-N, поступающий с оптической секции, преобразуется в блоке SPI в электрический сигнал и регенерируется. Кроме того, в блоке SPI из принимаемого сигнала выделяется составляющая тактовой частоты и формируется последовательность тактовых импульсов.

Регенерированный сигнал STM-N и тактовые импульсы подаются в блок RST, где по сигналу тактовой частоты осуществляется синхронизация приемной части блока RST по тактам, а по сигналу цикловой синхронизации (байты А1, А2), выделенному из заголовка RSOH - фазирование по циклам.

Затем по всему циклу STM-N вычисляется код BIP-8, который используется для сравнения с байтом В1 следующего цикла; результат сравнения (количество блоков с ошибками за цикл STM-N) передается в систему контроля и управления.

После вычисления кода BIP-8 сигнал дескремблируется; из восстановленного сигнала STM-N выделяются и используются байты RSOH.

В передающей части регенератора создается и вводится новый заголовок RSOH для следующей регенерационной секции. И так до конца линейного тракта.

В случае пропадания входного сигнала (LOS), потере цикловой синхронизации (LOF) или несовпадении байтов J0 (TIM) регенератор формирует нормальный заголовок RSOH, а остальные биты цикла STM-N заменяет единицами, т.е. передает сигнал индикации аварийного состояния мультиплексной секции (MS-AIS).

   При передаче сигнала MS-AIS регенератор синхронизируется от внутреннего генератора.

Классификация оптических интерфейсов

В рек. G.957 для трех уровней STM-N определены следующие категории оптических секций СЦИ:

- внутристанционные;

- короткие межстанционные;

- длинные межстанционные секции.

Внутри каждой категории возможны оптические секции с различными длинами волн и типами волокна для трех уровней STM-N. В результате установлено 18 кодов применения оптических интерфейсов.

Код применения состоит из трех символов.

Первый символ определяет тип секции:

• I - внутристанционные с длинами менее 2 км;

• S - короткие межстанционные с длинами примерно 15 км;

• L - длинные межстанционные секции - примерно 40 км в окне 1310 нм и 80 км в окне 1550 нм.

Второй символ определяет уровень синхронного транспортного модуля, например: 1, 4, 16.

Третий символ определяет тип источника излучения волны:

• 1 - источник излучения волны номинальной длины 1310 нм для одномодовых оптических волокон в соответствии с рек. G.652;

• 2 - источник излучения волны номинальной длины 1550 нм для для одномодовых оптических волокон в соответствии с рек. G.652 при использовании на небольшое расстояние и для одномодовых оптических волокон с минимизированными потерями в соответствии с рек. G.652 и G.654 при использовании на большие расстояния;

• 3 - номинальная длина волны источника излучения 1550 нм для оптических волокон со смещенной дисперсией в соответствии с рек. G.653.

Классификация оптических интерфейсов по кодам применения приведена в таблице 5.1.

Указанные в таблице 5.1 длины секций используются только для классификации. Реальная длина регенерационных секций определяется параметрами аппаратуры (уровень передачи, чувствительность), а также параметрами кабеля (затухание, дисперсия) и может быть намного больше, особенно при использовании оптических усилителей

Для организации передачи на участках большой протяженности к установленным в Рек. G.957 типам оптических интерфейсов СЦИ в Рек.G.691 (01/ 2001) были добавлены новые: V (Very Long – очень длинный) и U (Ultra Long – сверхдлинный). Они предусматривают применение оптических усилителей: выходного (бустера) и/или предварительного усилителя на приеме. Интерфейсы типа U реализуются с одновременным использованием усилителей обоих видов, а типа V – какого-то одного из них.

 

Таблица 5.1 - Классификация стандартных оптических интерфейсов

 

Использование

Внутри

Между станциями

станции

Короткая секция

Длинная секция

Номинальная длина волны источника (нм)

1310 1310 1550 1310

1550

Длина секции, км

£ 2

15

40

80

Уровни STM-1 I-1 S-1.1 S-1.2 L-1.1 L-1.2 L-1.3
STM-N STM-4 I-4 S-4.1 S-4.2 L-4.1 L-4.2 L-4.3
  STM-16  I-16  S-16.1  S-16.2  L-16.1  L-16.2  L-16.3

 

Для оптических сигналов STM-16 и STM-64, используемых при мультиплексировании системами DWDM, возможно применение так называемых “цветных” (Coloured) интерфейсов в соответствии с Рек. G.692 (10/98). Они формируются с помощью высокостабильных лазеров с узкой полосой спектра излучения, характерных для DWDM. Это облегчает стыковку систем СЦИ и DWDM, поскольку сигналы с “цветных” интерфейсов могут непосредственно подвергаться оптическому мультиплексированию, исключая необходимость применения транспондеров, преобразующих оптические сигналы.

 


Лекция №6



Поделиться:


Последнее изменение этой страницы: 2020-11-23; просмотров: 176; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.141.199.243 (0.056 с.)