Глава 18. Английский изобретатель головоломок генри Э. Дьюдени 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Глава 18. Английский изобретатель головоломок генри Э. Дьюдени



 

Генри Эрнест Дьюдени — величайший английский изобретатель головоломок. Трудно в наше время найти хоть одну книгу по занимательной математике, в которой (часто без указания авторства) не нашлось бы нескольких блестящих математических задач, рожденных его неисчерпаемой фантазией.

Дьюдени родился в небольшой английской деревушке Мэйфилд в 1857 году и, следовательно, был на 16 лет моложе американского гения головоломок Сэма Лойда. Не знаю, встречались ли когда-нибудь эти мастера головоломки лично, но в 90-х годах прошлого века они успешно сотрудничали в английском журнале Tit-Bits («Лакомые кусочки»), публикуя в нем серию статей с математическими головоломками, а позднее условились обмениваться своими находками, помещая их в отделах математических игр и головоломок различных газет и журналов. Этим и объясняется большое число совпадений и повторов в публикациях Лойда и Дьюдени.

Очевидно, из этих двух мастеров головоломки Дьюдени был лучшим математиком, чем Лойд. Но Лойд с непревзойденным мастерством умел поразить воображение широкой публики остроумными игрушками и различного рода рекламными трюками. Ни одно из творений Дьюдени никогда не достигало такой поистине мировой известности, какой пользовалась лойдовская игра в пятнадцать или головоломка «Таинственное исчезновение», в которой один из нарисованных по кругу китайских воинов исчезал буквально на глазах зрителей. С другой стороны, произведения Дьюдени отличались большей математической глубиной и тонкостью (однажды Дьюдени назвал ребусы и загадочные картинки, которые Лойд выпускал тысячами, «детской забавой, представляющей интерес лишь для слабоумных»). Подобно Лойду, Дьюдени любил облекать свои задачи в форму забавных анекдотов. В этом ему, по-видимому, оказывала помощь его жена Алиса, написавшая более 30 романов, пользовавшихся в свое время огромной популярностью. Дьюдени принадлежат шесть сборников головоломок (три из них составлены после его смерти, последовавшей в 1931 году). И по сей день они остаются непревзойденными шедеврами занимательной математической литературы.

Первая книга Дьюдени «Кентерберийские головоломки»[35] вышла в свет в 1907 году. По замыслу автора она должна была состоять из серии головоломок, которые по очереди рассказывают те самые пилигримы, чьи истории поведал нам Чосер.[36] «Не стану объяснять, сколь необычным путем эти головоломки попали ко мне в руки, — писал Дьюдени, — а сразу приступлю к делу… чтобы предоставить моим читателям возможность испробовать свои силы в их решении». Помещенная в этой книге задача галантерейщика принадлежит к числу наиболее известных геометрических находок Дьюдени. Задача состоит в том, чтобы разрезать равносторонний треугольник на четыре части, из которых можно было бы составить квадрат (рис. 101).

 

Рис. 101 Одна из головоломок Дьюдени. Как разрезать равносторонний треугольник, чтобы из его частей можно было составить квадрат?

 

Разделим стороны АВ и ВС пополам в точках D и Е. На продолжении отрезка АЕ за точку Е отложим отрезок EF, равный ЕВ. Разделив отрезок AF пополам, опишем дугу AHF с центром в точке G — середине отрезка AF. Продолжим сторону СВ за вершину В до пересечения с проведенной только что дугой в точке Н. Из точки Е как из центра опишем дугу HJ.

На стороне АС отложим отрезок JK равный BE. Из точек D и К опустим перпендикуляры на EJ. Их основания обозначим через L и М. В правом верхнем углу на рис. 101 показано, как следует расположить части треугольника, чтобы составить из них идеальный квадрат. Если получившиеся при разрезании четыре фигуры скрепить между собой в трех вершинах так, как показано на рис. 101 внизу, то они образуют цепочку, которая при складывании по часовой стрелке даст треугольник, а при складывании против часовой стрелки — квадрат. Выступая в 1905 году с докладом о своей задаче перед Лондонским Королевским обществом, Дьюдени демонстрировал решение на модели из красного дерева с бронзовыми шарнирами.

Теорема, впервые доказанная известным немецким математиком Давидом Гильбертом, утверждает, что любой многоугольник, если разрезать его на конечное число частей, можно превратить в любой другой многоугольник, равновеликий первому. Доказательство этой теоремы длинно, но несложно. Оно основано на двух фактах:

1) всякий многоугольник при разрезании его по диагоналям распадается на конечное число треугольников;

2) всякий треугольник можно разрезать на конечное число частей, из которых можно составить прямоугольник с заранее заданным основанием. Это означает, что любой многоугольник самой причудливой формы мы всегда можем превратить в прямоугольник с заданным основанием, если проделаем три операции: разрежем исходный многоугольник на треугольники; разрежем треугольники на части, сложив из этих частей прямоугольники с заданным основанием, равновеликие треугольникам; наконец, прямоугольники с одинаковым (заданным) основанием объединим в один большой прямоугольник с тем же основанием. Производя названные три операции в обратном порядке, мы сможем превратить построенный большой прямоугольник в любой другой равновеликий ему многоугольник.

Совершенно неожиданным является тот факт, что аналогичной теоремы для многогранников — объемных тел, ограниченных плоскими многоугольниками, — не существует. Не существует также и общего метода, который позволил бы нам рассечь плоскостями любой многогранник так, чтобы из получившихся частей можно было сложить любой другой многогранник равного объема, хотя в отдельных частных случаях эта задача вполне разрешима. От надежды найти общий метод пришлось отказаться еще в 1900 году, когда было доказано, что призму нельзя рассечь так, чтобы из ее частей можно было составить равный по объему тетраэдр.

Хотя метод Гильберта гарантирует возможность превращения одного многоугольника в другой с помощью конечного числа разрезов, число получающихся при этом частей может быть очень велико. Изящное решение предполагает использование минимального числа частей. Найти такой минимум часто бывает весьма трудно.

В тонком искусстве геометрических построений Дьюдени неизменно сопутствовал успех, и ему часто удавалось улучшать рекорды, незыблемо державшиеся в течение долгих лет. Например, долгое время считали, что превратить правильный пятиугольник в квадрат можно лишь в том случае, если мы разрежем пятиугольник по крайней мере на семь частей, хотя для превращения в квадрат правильного шестиугольника его достаточно разрезать на пять частей.

Дьюдени удалось превратить правильный пятиугольник в квадрат, разрезав его всего лишь на шесть частей. Этот рекорд остается непревзойденным и поныне. Решение Дьюдени показано на рис. 102.

 

Рис. 102 Как составить квадрат из разрезанного пятиугольника.

 

Если кто-нибудь заинтересуется тем, каким образом Дьюдени напал на свой метод, ему следует обратиться к его книге ««Математические забавы».[37]

Наиболее известная головоломка Дьюдени — задача о пауке и мухе — представляет собой элементарную, но весьма изящную задачу из геометрии геодезических.[38] Впервые она была опубликована в 1903 году в одной английской газете, но внимание широкой публики привлекла лишь два года спустя, после того как ее перепечатала лондонская газета «Дейли мейл». Комната имеет форму прямоугольного параллелепипеда, размеры которого указаны на рис. 103.

 

Рис. 103 Задача о пауке и мухе.

 

Посредине боковой стены на расстоянии одного фута от потолка сидит паук. Посредине противоположной стены на высоте одного фута от пола сидит муха. От страха у нее отнялись ноги, и она не может двинуться с места. Спрашивается, каково кратчайшее расстояние, которое должен преодолеть паук для того, чтобы схватить муху?

Для решения задачи нужно построить развертку граней прямоугольного параллелепипеда и провести на ней прямую от местонахождения паука к точке, в которой сидит муха. Поскольку построить развертку можно многими способами, найти кратчайшее расстояние не так легко, как кажется на первый взгляд.

В менее известной задаче Дьюдени, также связанной с построением геодезической, речь идет о цилиндрическом стакане (рис. 104), имеющем четыре дюйма в высоту и шесть дюймов по окружности.

 

Рис. 104 Задача о мухе и капле меда.

 

Внутри него на расстоянии одного дюйма от верхнего края на стенке имеется капелька меда. Снаружи на стенке, прямо против капельки, на расстоянии одного дюйма от дна стакана сидит муха.

Каков кратчайший путь мухи к меду? Какое расстояние должна пройти муха, следуя кратчайшим путем к любимому лакомству?

Интересно отметить, что, хотя Дьюдени был мало знаком с топологией, в его время еще только начинавшей развиваться, при решении различных головоломок, связанных с отысканием кратчайших путей или размещением фигур на шахматной доске, он нередко пользовался остроумными топологическими приемами. Одним из таких приемов является его «метод нити и пуговиц». Сущность этого метода хорошо можно понять на примере старинной шахматной задачи, изображенной на рис. 105.

 

Рис. 105 Изобретенный Дьюдени «метод нити и пуговиц».

 

Как поменять местами черных и белых коней за наименьшее число ходов? Заменим восемь внешних квадратов доски восемью пуговицами, а все возможные ходы каждого коня отметим прямыми, соединяющими начальную и конечную позиции (на рис. 105 это показано на средней схеме). Представим себе теперь, что эти прямые — не что иное, как нити, связывающие пуговицы. Очевидно, что эти нити, не меняя топологической структуры и связности схемы, можно распутать и расположить говицы по окружности (на рис. 105 такое расположение показано внизу). Теперь сразу видно, что для решения задачи нужно лишь, записывая ходы (чтобы потом воспроизвести их на шахматной доске), переставлять коней в любом направлении по кругу до тех пор, пока они не поменяются местами. То, что поначалу казалось сложным, «метод нити и пуговиц» делает до смешного простым.

Многие задачи Дьюдени относятся к теории чисел. Наиболее трудную из них сформулировал доктор медицины из «Кентерберийских головоломок». У почтенного доктора было два сферических сосуда, один из них имел в окружности ровно фут, другой — два фута. Доктору хотелось выяснить точную величину двух других сосудов той же формы, но иных размеров, которые вмещали бы столько же жидкости, сколько первые два сосуда.

Поскольку объемы сосудов, имеющих одинаковую форму, но отличающихся размерами (в геометрии такие фигуры называются подобными), относятся как кубы соответствующих линейных размеров, задача сводится к решению диофантова уравнения х3 + у3 = 9 в рациональных числах, отличных от 1 и 2. Два таких числа, разумеется, должны быть дробными. Дьюдени нашел дроби

 

Знаменатели и первой и второй дроби оказались короче ранее известных. Если учесть, что Дьюдени не пользовался никаким калькулятором, то этот факт достоин удивления.

Любителям такого рода задач доставит удовольствие и более простое исследование: найти два рациональных числа, сумма кубов которых равна 6. Французский математик прошлого века Андриен Мари Лежандр доказал, что таких дробей не существует, однако Дьюдени опроверг его «доказательство» и сумел найти решение.

Числители и знаменатели найденных Дьюдени дробей всего лишь двузначны!

Задаче Дьюдени о треугольнике, который нужно разрезать так, чтобы из его частей можно было составить квадрат, было посвящено много писем читателей. Оказалось, что метод Дьюдени после некоторых изменений приложим не только к равносторонним треугольникам, но и к более широкому классу треугольников. Одна читательница сообщила, что задача Дьюдени навела ее сына на мысль сделать набор из четырех столиков, которые при желании можно составить так, чтобы их крышки образовывали либо квадрат, либо равносторонний треугольник. Столики всем очень понравились. Другой читатель, воспользовавшись решением Дьюдени, разбил плоскость на бесконечную мозаику из взаимозацепляющихся квадратов и равносторонних треугольников.

Некоторые читатели, ошибочно полагая, что точки J и К (на рис. 101) расположены непосредственно под точками D и Е, прислали доказательства того, что из четырех частей треугольника нельзя составить точный квадрат. Но по построению точки J и К не совпадают с основаниями перпендикуляров, опущенных из D и Е. Строгое доказательство точности решения Дьюдени можно найти в статье Честера У. Хоули «Еще одна заметка о превращении квадрата в равносторонний треугольник».[39]

Интересный вариант задачи Дьюдени о пауке и мухе опубликовал Морис Крайчик. Восемь пауков отправляются на охоту из точки, расположенной на 80 дюймов выше центра торцовой стенки комнаты, имеющей форму прямоугольного параллелепипеда.

Каждый из них, следуя своим маршрутом, направляется к мухе, сидящей в точке, расположенной на 80 дюймов ниже центра противоположной стенки комнаты. Каждый паук движется со скоростью 0,65 мили в час. По истечении 625/11 секунды все пауки одновременно настигают муху. Каковы размеры комнаты?

 

Ответы  

Длина кратчайшего пути от паука к мухе равна 40 футам, как видно из развертки комнаты, показанной на рис. 106. Интересно заметить, что эта геодезическая пересекает 5 из 6 граней развертки.

 

Рис. 106 Ответ к задаче о пауке и мухе.

 

Муха доползает до капли меда, пройдя 5 дюймов. Ее маршрут на развертке стакана показан на рис. 107.

 

Рис. 107 Ответ к задаче о мухе и капле меда.

Именно так распространялся бы свет из точки, где сидела муха, в точку, где находится капля меда (от верхнего края стакана луч света отражается по закону: угол падения равен углу отражения). Из чертежа видно, что путь мухи равен длине гипотенузы прямоугольного треугольника с катетами в 3 и 4 дюйма.

Две дроби, сумма кубов которых равна 6, выражаются числами 17/21 и 37/21

Решение задачи о пауках и мухе дано в книге Крайчика.

 

Глава 19. ЦИФРОВЫЕ КОРНИ

 

Запишите номер вашего телефона. Из входящих в него цифр, переставленных в любом порядке, образуйте новое число и вычтите из большего числа меньшее. Сложите все цифры ответа. Среди волшебных знаков (рис. 108) найдите звездочку и поставьте на нее палец.

 

Рис. 108 Волшебные знаки для фокуса с телефонным номером.

 

Начиная со звездочки (она соответствует числу 1), обходите по часовой стрелке волшебные знаки, прибавляя при каждом шаге по 1 (так, треугольник будет соответствовать 2, три зигзагообразные линии — 3 и т. д.) до тех пор, пока вы не досчитаете до полученной суммы. Ваш счет всегда будет заканчиваться на спирали.

Нетрудно понять, на чем основан этот нехитрый фокус. Он может служить отличным введением в понятие сравнения двух чисел, сформулированное Гауссом. Если два числа при делении на любое заданное число k дают одинаковые остатки, то про такие числа говорят, что они сравнимы по модулю к, а само число k называют модулем сравнения. Например, 16 и 23 при делении на 7 дают остаток 2, следовательно, эти числа сравнимы по модулю 7.

Так как 9 — наибольшая из цифр в десятичной системе счисления, сумма цифр любого числа всегда сравнима по модулю 9 с самим числом. Цифры, которыми записана сумма цифр исходного числа, в свою очередь можно сложить и получить новое, третье число, сравнимое с двумя первыми, и т. д. Продолжая этот процесс, мы в конце концов получим однозначное число — сам остаток.

Например, 4157 при делении на 9 дает остаток 8. Сумма цифр числа 4157 равна 17 и тоже дает при делении на 9 остаток 8. Сумма цифр числа 17 равна 8. Последнее однозначное число, равное самому остатку, назовем цифровым корнем исходного числа. Оно совпадает с остатком от деления исходного числа на 9, если только этот остаток отличен от 0. Для чисел, сравнимых с 0 по модулю 9, цифровой корень равен не 0, а 9.

Вычисление цифрового корня по сути дела есть не что иное, как давно известный прием «вычеркивания девяток». Им широко пользовались для проверки правильности произведенных выкладок еще в те времена, когда электронных вычислительных машин не было и в помине. В некоторых современных быстродействующих компьютерах этот прием используется как один из методов автоматической самопроверки точности вычислений. Он основан на довольно простом факте: какие бы действия мы ни производили над числами в процессе решения задачи (складывали их, вычитали, умножали и даже делили друг на друга), ответ всегда будет сравним по модулю 9 с числом, получающимся при сложении, вычитании, умножении или делении цифровых корней этих же чисел.

Например, если вы хотите быстро проверить, правильно ли вычислена сумма больших чисел, то достаточно взять цифровые корни слагаемых, просуммировать их и сравнить с цифровым корнем ответа, в котором вы сомневаетесь. Если цифровые корни не сходятся, вы сразу же знаете, что где-то вкралась ошибка. Ошибка может быть и в том случае, когда цифровые корни сходятся, однако с большой уверенностью можно утверждать, что вычисления произведены правильно.

Посмотрим, какое отношение имеет все сказанное к фокусу с телефонным номером. Перестановка цифр номера не меняет его цифрового корня, поэтому, вычитая из большего числа меньшее, мы берем разность двух чисел с одинаковыми цифровыми корнями. Такая разность делится на 9 без остатка. Чтобы понять, почему так происходит, представим большее число как некоторое кратное девяти, к которому прибавлен цифровой корень (остаток при делении числа на 9). Меньшее число состоит из меньшего кратного 9, к которому прибавлен тот же самый цифровой корень. При вычитании из большего числа меньшего одинаковые цифровые корни взаимно уничтожаются и остается число, кратное 9:

 

 

Поскольку ответ кратен 9, его цифровой корень равен 9. Сумма цифр полученной разности меньше самой разности, а ее цифровой корень также равен 9, поэтому окончательный ответ заведомо кратен 9. На нашей схеме имеется всего 9 волшебных знаков. Начав счет с первого, мы всегда должны окончить его на последнем, девятом знаке.

Цифровые корни часто позволяют быстро и просто решать задачи, которые при ином подходе кажутся необычайно трудными.

Предположим, например, что вам нужно найти наименьшее из чисел, запись которых состоит из одних лишь нулей и единиц, делящееся без остатка на 225. Цифровой корень числа 225 равен 9, поэтому вы сразу же знаете, что искомое число должно иметь цифровой корень, равный 9. Наименьшее из чисел, записанных с помощью одних лишь единиц и имеющих цифровой корень 9, очевидно, равно 111 111 111. Дописывая нули, мы лишь увеличиваем число, но не изменяем его цифровой остаток. Наша задача заключается в том, чтобы, увеличив число 111 111 111 как можно меньше, превратить его в кратное 225. Поскольку число 225 делится на 25, искомое число также должно быть кратно 25. Все кратные 25 оканчиваются цифрами 00, 25, 50 или 75. По условию задачи в записи числа разрешается использовать только нули и единицы, поэтому числа, оканчивающиеся цифрами 25, 50 и 75, отпадают. Следовательно, к 111 111 111 справа нужно приписать 00. Это и дает ответ задачи: 11111111100.

Понятие цифрового корня позволяет проанализировать и многие математические игры, например следующую игру в кости.

Играют вдвоем. Прежде всего задумывают какое-нибудь число (чтобы игра была интересной, обычно берут число, большее 20).

Первый игрок бросает кость. Число очков, выпавшее на верхней грани, запоминают, после чего второй игрок поворачивает кость одной из боковых граней вверх и прибавляет значащееся на ней число к уже набранным очкам. Игроки продолжают переворачивать кость и добавлять число, оказывающееся на верхней грани, к текущему счету до тех пор, пока кто-нибудь из них либо дойдет до задуманного числа, либо заставит своего противника превысить его. Анализ игры затрудняется тем, что числа на боковых гранях зависят от положения кости и изменяются, когда кость переворачивают. Можно ли указать оптимальную стратегию, которой следует придерживаться в игре?

Ключом к оптимальной стратегии служат числа, имеющие те же цифровые корни, что и задуманное число. Если вы сможете так изменить счет игры, чтобы он совпал с одним из таких чисел, или сумеете постоянно препятствовать аналогичному намерению своего противника, то вас непременно ожидает выигрыш. Поясним сказанное на примере. Предположим, что противники условились вести игру до 31 очка. Цифровой корень числа 31 равен 4. Единственный способ выиграть для первого игрока заключается в том, чтобы при бросании кости получить на верхней грани 4 очка, а при последующих ходах стараться либо довести счет до одного из чисел 4—13–22—31, либо помешать противнику сделать то же самое.

Вторая задача несколько труднее, и мы не будем останавливаться на ней подробно. Скажем лишь, что добиться проигрыша противника можно, либо бросая кость так, чтобы пятерка оказалась на нижней или верхней грани, и доводя затем счет до чисел 8—17–26, либо бросая кость так, чтобы на верхней или нижней грани выпала четверка, и стараясь довести счет до одного из чисел, встречающихся в следующих трех последовательностях: 9—18–27, 1—10–19—28 и 5-14-23.

Если не считать случая, когда цифровой корень задуманного числа равен 9, всегда существует одно или несколько положений игральной кости, при которых выигрыш первого игрока обеспечен.

Если же задуманное число кратно 9 (и, следовательно, его цифровой корень равен 9), то победы всегда может добиться второй игрок.

При случайном выборе числа, до которого ведется счет игры, шансы на победу у второго игрока намного выше, чем у первого.

Предположим, что максимальный счет определяется по выбору первого игрока. Каким в этом случае должен быть цифровой корень задуманного числа, для того чтобы шансы на выигрыш у первого игрока были как можно более высокими?

Многие из карточных фокусов, для показа которых не требуется особой ловкости рук, зависят от свойств цифровых корней.

Лучшим из них, по моему мнению, следует считать фокус Стюарта Джеймса «Предсказание будущего». Джеймс известен как блестящий мастер по придумыванию карточных фокусов, основанных на тонких математических идеях.

Из тщательно перетасованной колоды вы выбираете девять карт — от туза до девятки — и располагаете их по порядку так, чтобы туз оказался сверху. Показав карты зрителям, вы заявите, что сейчас разделите отобранные девять карт так, что никто не сможет с уверенностью сказать, где находится та или иная карта. Держа девять карт вверх рубашкой, вы делаете вид, что наугад разбиваете их на две части, а на самом деле перекладываете наверх три нижние карты, после чего ваши девять карт расположатся так (мы называем карты по порядку, сверху вниз; 1 соответствует тузу): 7-8-9-1-2-3-4-5-6.

Медленно снимая по одной карте из тех девяти, что вы держите в руках (каждый раз вы берете верхнюю карту), вы кладете их поверх большой колоды, лежащей перед вами на столе. При этом каждый раз, сняв очередную карту, вы спрашиваете зрителя, не желает ли он ее выбрать (зритель должен выбрать по своему усмотрению одну из девяти карт). Когда зритель укажет выбранную им карту, вы оставляете ее сверху тех карт, которые еще не успели выложить на стол, и откладываете их в сторону.

Попросите теперь зрителя снять верхнюю часть большой колоды. Подсчитав число карт в снятой и оставшейся частях колоды, найдите цифровые корни полученных вами чисел. Сложите оба цифровых корня и, если результат окажется больше 9, замените их сумму ее цифровым корнем. Откройте теперь выбранную зрителем карту (самую верхнюю из отложенных вами карт). Ее значение в точности совпадает с полученным вами результатом и позволяет предсказывать его заранее!

Объясняется фокус очень просто. После того как вы отобрали девять карт, расположили их по порядку и переложили три нижние карты наверх, самой верхней из девяти карт будет семерка. В колоде останутся 43 карты. Цифровой корень числа 43 равен 7. Если зритель не выберет семерку вы возвращаете ее в колоду, увеличивая тем самым число карт в ней до 44. После этого верхней картой у вас в руках становится 8, и цифровой корень числа 44 также равен 8. Иначе говоря, какую бы карту зритель ни выбрал, ее значение всегда совпадает с цифровым корнем числа карт в колоде. Разбиение колоды на две части, подсчет числа карт в каждой из них и другие описанные выше действия, разумеется, приводят к числу, совпадающему с цифровым корнем числа всех карт в колоде.

* * *

В начале этой главы было сказано, что поскольку основанием нашей системы счисления служит число 10, то цифровой корень любого числа совпадает с остатком при делении этого числа на 9.

Это утверждение нетрудно доказать. Некоторых читателей, может быть, заинтересует неформальный набросок этого доказательства.

Рассмотрим какое-нибудь четырехзначное число, например 4135. Его можно записать в виде суммы степеней числа 10:

(4 ∙ 1000) + (1 ∙ 100) + (3 ∙ 10) + (5 ∙ 1).

Вычитая по 1 из каждой степени 10, то же число можно представить в виде:

(4 ∙ 999) + (1 ∙ 99) + (3 ∙ 9) + (5 ∙ 0) + 4 + 1 + 3 + 5.

Все выражения в скобках кратны 9. Отбросив их, мы получаем сумму цифр исходного числа: 4+1+3 + 5.

В общем случае четырехзначное число abed представимо в виде

(а ∙ 999) + (Ь ∙ 99) + (с ∙ 9) + (d ∙ 0) + а + Ь + с + d,

и поэтому после вычеркивания чисел, кратных 9, должна оставаться сумма a+b+c+d. Разумеется, эта сумма не обязательно должна выражаться однозначным числом, но, записав ее так же, как исходное число, и вычеркнув все кратные 9, мы всегда можем найти ее остаток при делении на 9 и т. д. до тех пор, пока не получим однозначное число — цифровой корень. Сказанное справедливо для любого числа, как бы велико оно ни было. Поэтому цифровой корень — это число, которое остается после того, как из исходного числа вычеркнуто максимальное число девяток, то есть после деления исходного числа на 9.

Цифровые корни часто используют для того, чтобы убедиться, что какое-нибудь очень большое число не является совершенным квадратом или кубом. Все квадраты имеют цифровые корни 1, 4, 7 или 9, а их последними цифрами могут быть 2, 3, 7 или 8. Кубы могут оканчиваться на любую цифру, но их цифровыми корнями могут быть только 1, 8 или 9. Самое любопытное, что четные совершенные числа (а до сих пор не было найдено ни одного нечетного совершенного числа) должны оканчиваться цифрой 6 или 8. Если отбросить наименьшее совершенное число 6, то у всех остальных совершенных чисел цифровой корень равен 1.

 

Ответы  

Если при игре в кости число, до которого ведется счет, выбирает первый игрок, то ему лучше всего остановить свой выбор на каком-нибудь числе с цифровым корнем, равным 7. Как следует из приведенной здесь таблицы, именно при 7 выигрыш первого игрока обеспечен (при правильной игре) в трех случаях из шести возможных, то есть с вероятностью 1/2 при первом бросании на кости выпадает столько очков, сколько нужно первому игроку для выигрыша. При всех других цифровых остатках шансы первого игрока на победу хуже.

 

Глава 20. ДЕВЯТЬ ЗАДАЧ

 

1. Сцепленные болты. Два одинаковых болта сцеплены нарезкой (рис. 109).

 

Рис. 109 Сцепленные болты.

 

Взяв их покрепче за головки, чтобы они не могли проворачиваться, обведите несколько раз один болт вокруг другого в направлении, указанном стрелками (повертев перед этим большими пальцами рук, вы сможете наглядно представить себе движение болтов).

Будут ли головки болтов: а) сближаться, б) расходиться или в) оставаться на неизменном расстоянии друг от друга?

Использовать при решении задачи настоящие болты не разрешается.

 

2. Кругосветный полет. Группа самолетов базируется на небольшом острове. Баки каждого самолета вмещают столько топлива, что его хватает на облет половины земного шара. При заправке в воздухе из баков одного самолета в баки другого можно перекачивать любое количество горючего. На земле заправку можно производить только на острове. Для удобства решения задачи предполагается, что заправка на земле и в воздухе происходит мгновенно, бех потерь времени.

Чему равно минимальное число самолетов, которые смогут обеспечить полет одного самолета по большому кругу, если считать, что скорость и расход топлива у всех самолетов одинаковы и все самолеты благополучно возвращаются на свою базу?

3. Окружность на шахматной доске. Сторона клетки на шахматной доске 4 см. Чему равен радиус наибольшей окружности, которую можно провести на шахматной доске так, чтобы она проходила только по черным клеткам?

4. Универсальная пробка. Во многих сборниках головоломок объясняется, как вырезать пробку, которой можно плотно заткнуть квадратное, круглое и треугольное отверстия (рис. 110).

 

Рис. 110 Универсальная пробка.

 

Не менее интересно вычислить объем такой пробки. Предположим, что радиус ее круглого основания равен единице длины, а высота — двум единицам и что ребро в ее верхней части (имеющее в длину также две единицы) расположено строго над одним из диаметров основания и параллельно ему. Все параллельные сечения пробки, плоскость которых перпендикулярна верхнему ребру, имеют вид треугольников.

Поверхность пробки можно рассматривать как образованную прямыми, соединяющими точки верхнего, прямолинейного и нижнего, имеющего форму окружности, ребер. Каждая прямая параллельна одной из плоскостей, перпендикулярных верхнему ребру.

Разумеется, объем пробки нетрудно вычислить методами анализа, но найти его можно и более простым способом, зная лишь, что объем прямого цилиндра равен произведению площади его основания на высоту.

5. Повторяющееся число. Если у вас соберутся гости, вы сможете удивить их необычным фокусом. Попросите одного из гостей — назовем его А — написать на листке бумаги какое-нибудь трехзначное число два раза подряд, чтобы получилось шестизначное число (например 394 394). Отвернитесь так, чтобы вы не могли видеть написанное число, и попросите А передать листок другому гостю, В, которого попросите разделить число на 7.

«Об остатке не беспокойтесь, его не будет», — говорите вы гостю В, и он с удивлением убеждается, что вы правы (например, 394 394 при делении на 7 дает 56 342). Не сообщая вам результат, В передает листок бумаги третьему гостю, С, который делит полученный В результат на 11. Вы снова утверждаете, что остатка не будет, и снова оказываетесь правы (56 342 при делении на 11 дает 5122).

Не оборачиваясь к гостям и не зная, какие цифры написаны на листке бумаги, вы просите передать его четвертому гостю, D, который должен поделить последний результат на 13. Снова деление происходит без остатка (5122 при делении на 13 дает 394). Окончательный результат D записывает на клочке бумаги и, сложив его, передает вам. Не разворачивая листка с ответом, вы передаете его А и говорите: «Разверните листок и вы увидите свое трехзначное число».

Докажите, что фокус получается всегда, независимо от того, какое число выберет первый гость.

6. Столкновение ракет. Две ракеты летят навстречу друг другу, одна — со скоростью 9000 миль/час, а другая — со скоростью 21 000 миль/час. Их стартовые площадки находятся на расстоянии 1317 миль одна от другой. Не пользуясь карандашом и бумагой, подсчитайте, какое расстояние будет между ракетами за минуту до столкновения.

7. Как передвинуть монеты. На ровной гладкой поверхности (например на столе) выложен треугольник из шести монет (рис. 111).

 

Рис. 111 Как передвинуть монеты?

 

Требуется за наименьшее число ходов передвинуть монеты так, чтобы они образовали кольцо, показанное на рис. 111. Каждый ход состоит в передвижении только одной монеты. Сдвигать при этом с места другие монеты нельзя. В новом положении каждая монета должна касаться двух других монет. Поднимать монеты с поверхности при решении задачи не разрешается.

8. Рукопожатия и графы. Докажите, что число участников последнего конгресса биофизиков, обменявшихся рукопожатиями нечетное число раз, четно. Та же задача допускает и графическую интерпретацию. На листке бумаги поставьте любое число точек (каждая точка изображает участника конгресса). Между любыми двумя точками разрешается проводить сколько угодно линий. Каждая точка может неограниченное число раз «обмениваться рукопожатиями» с другими точками или быть необщительной и не здороваться ни с кем. Докажите, что число точек, из которых исходит нечетное число линий, четно.

9. Необычная дуэль. Смит, Браун и Джонс, решив внести в обычную дуэль на пистолетах некоторое разнообразие, условились провести поединок по несколько измененным правилам. Вытащив жребий и узнав, кому из них выпало стрелять первым, кому — вторым и кому — третьим, они разошлись по своим местам, встав в вершинах равностороннего треугольника. Договорились, что каждый по очереди производит лишь один выстрел и может целиться в кого угодно. Дуэль продолжается до тех пор, пока не будут убиты любые два ее участника. Очередность стрельбы определяется только результатами жеребьевки и остается неизменной в течение всего поединка.

Все три участника знают, что Смит никогда не промахивается, Браун попадает в цель в 80 % случаев, а Джонс, стреляющий хуже всех, промахивается так же часто, как и попадает в цель.

Кто из дуэлянтов имеет более высокий шанс уцелеть, если считать, что все трое придерживаются оптимальных стратегий и никто из них не будет убит шальной пулей, предназначенной другому?

Более трудный вопрос: чему равна вероятность остаться в живых для каждого из дуэлянтов?

 

Ответы  

1. Головки болтов не сближаются и не расходятся. Движение болтов можно сравнить с движением человека, идущего вверх по спускающемуся эскалатору со скоростью эскалатора.

2. Чтобы обеспечить кругосветный полет одного самолета, достаточно двух самолетов. Сделать это можно многими способами.

Способ, предлагаемый нами, по-видимому, наиболее экономичен: расходуется лишь пять заправок горючего, пилоты двух обеспечивающих полет самолетов успевают перед вылетом с базы выпить по чашке кофе и перехватить по бутерброду, а весь метод обладает не лишенной приятности симметрией.

Самолеты А, В и С стартуют одновременно. Пролетев 1/8 намеченного расстояния (то есть длины окружности большого круга), С перекачивает 1/4 исходного запаса горючего в баки А и 1/4 — в баки В, после чего у него остается 1/4 заправки. Этого количества горючего ему хватает, чтобы вернуться на базу.

Самолеты А а В, продолжая полет, проходят еще 1/8 кругосветного маршрута, после чего В перекачивает 1/4 заправки в баки А.

Баки В остаются заполненными ровно наполовину, и он благополучно дотягивает до родного аэродрома, совершая посадку уже с пустыми баками.

Полностью заправленный самолет А продолжает лететь до тех пор, пока у него не кончится горючее. К этому моменту он находится на расстоянии 1/4 всего пути от базы, и его встречает самолет С, успевший перезаправиться на острове. С перекачивает в баки А 1/4 заправки и вслед за А берет курс на базу. На расстоянии 1/8 окружности земного шара горючее у А и С кончается, но тут их встречает побывавший на базе В, который отдает каждому из них по 1/4 полной заправки. После этого топлива в баках каждого самолета хватает как раз на то, чтобы благополучно вернуться на свою базу (правда, садиться приходится с пустыми баками).

Графически весь полет можно изобразить с помощью диаграммы, показанной на рис. 112, где по горизонтальной оси отложено расстояние, а по вертикальной — время. Правый и левый края диаграммы следует считать склеенными.

 

Рис. 112 К задаче о кругосветном полете самолета.

 

3. Взяв раствор циркуля равным квадратному корню из 20 см и поставив его острие в центр черной клетки на шахматной доске с четырехсантиметровыми клетками, вы сможете описать наибольшую из окружностей, проходящих только по черным клеткам.



Поделиться:


Последнее изменение этой страницы: 2020-11-11; просмотров: 186; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 52.15.147.20 (0.547 с.)