Обоснование использованных алгоритмов 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Обоснование использованных алгоритмов



Введение

 

В компьютерной графике на сегодняшний день большое внимание уделяется алгоритмам получения реалистических изображений. Эти алгоритмы являются самыми затратными по времени. Обусловлено это тем, что они должны предусматривать множество физических явлений, таких как преломление, отражение, рассеивание света. Профессиональные программы для кинематографа учитывают еще больше явлений (дифракцию, интерференцию, зависимость коэффициентов преломления, отражения, поглощения от длины волны падающего света, вторичное, третичное отражение света).

В моей курсовой работе для рендеринга применяется алгоритм обратной трассировки. На сегодняшний день он считается одним из лучших для формирования реалистических изображений. Его используют большинство трехмерных графических редакторов. Применяется так же алгоритм z-буфера. Но эффекты отражения и преломления, там достигаются искусственными методами и считаются не совсем точно. Подобным методом пользуются в программах, где крайне важна скорость. Примером таких программ служат компьютерные игры. Почти все они построены на использовании алгоритма z-буфера.

Целью моей курсовой было так же сделать алгоритм обратной трассировки как можно более быстрым. Для этого я применил метод иерархических оболочек. Его применение позволяет сделать время рендеринга, пропорциональным логарифму от числа объектов, а не числу объектов. Добиться с помощью этого реального времени, конечно, не удастся, но делает время ожидания приемлемым, равным порядка 5-30 секунд для 30000 треугольников на сцене.

Модуль Engine программы, может быть использован отдельно, в других программах Delphi. С помощью всего нескольких функций пользователь сможет задать сцену любой сложности и произвести рендеринг сцены. Модуль содержит функции для:

управления камерой

управления источниками света

задания объектов на сцене.

поворота объектов

рендеринга сцены

вывода изображения в задаваемое окно

По использованию модуль Engine очень похож на модуль OpenGL.


Конструкторская часть

 

Структура данных

 

Сцена представляется набором объектов двух типов: источников света и собственно объектов, которые необходимо визуализировать.

 

Источники света

Источники света не имеют никаких геометрических размеров, они являются точечными и не рисуются при рендеринге. Информация об источниках света хранится в массиве Svet. В i-ом элементе массива хранится информация об i-ом источнике света. Элемент массива представляет собой запись:

 

TLight=record

tip: integer;

lim: real;

Center: TPoint;

R,G,B: real;

DirX,DirY,DirZ: real;

end;

 

Поле tip содержит информацию о типе источника. Если оно равно 1, то источник светит во все стороны. Если оно равно 2, то источник светит внутри конуса, направляющая которого DirX, DirY, DirZ, а угол при вершине равен 2*Lim. Угол измеряется в радианах. Если тип источника - 3, то источник также светит в конусе, но по мере отклонения от образующей его интенсивность уменьшается и на угле Lim равна нулю.

Поле Center содержит координаты источника в глобальной системе координат.

Поля R,G,B содержат интенсивность источника по красной, зеленой и синей компоненте. Они могут принимать значения от 0 до 1.

Если источник первого типа, то нет необходимости вводить поля DirX, DirY, DirZ и Lim, так как они не требуются для расчета интенсивности.

 

Объекты для визуализации

Объекты для визуализации, задаются в виде полигональной модели. Каждый объект представляет собой набор полигонов. В моей курсовой в качестве полигонов выбраны треугольники, так как при этом значительно упрощается текстурирование, сглаживание и процедура пересечения луча с треугольником. Сцена представляет собой набор объектов. Объекты состоят из треугольников. Информация об одном объекте хранится в трех массивах:

Objects (массив объектов), Vse (массив треугольников), Toch (массив точек).

Массив Objects

Элемент массива представляет собой запись:

 

TObj=record

StartT,EndT: integer;

StartG,EndG: integer;

XC,YC,ZC,R: real;

nnn,NPr: real;

end;

 

StartT, EndT соответствуют индексам в массиве точек. Они указывают, что точки с номером, большим или равным StartT и меньшим или равным EndT, принадлежат данному объекту.

StartG, EndG соответствуют индексам в массиве треугольников. Они указывают, что треугольники с номером, большим или равным StartG и меньшим или равным EndG, принадлежат данному объекту.

В NPr содержится показатель преломления данного объекта.

В nnn содержится коэффициент затухания света в данном объекте.

Массив Toch

Элемент массива представляет собой запись:

 

TApex=record

X,Y,Z: real;

nx,ny,nz: real;

end;

 

Поля X,Y,Z содержат координаты точки.

Поля nx, ny, nz содержат значение нормали в данной точке. Эти поля используются при закраске по методу Фонга.

Массив Vse

Массив содержит полную информацию обо всех треугольниках сцены.

Элемент массива представляет собой запись:

 

TGran=record

Nom: array [1..3] of integer;

ColorR,ColorG,ColorB: Byte;

KOt,KPr,KRas,KDif,KBlik: real;

Tek: array [1..3] of array [1..2] of integer;

TNom: integer;

PaintType: boolean;

XC,YC,ZC,R: real;

O: integer;

p: real;

end;

 

Массив Nom содержит номера точек, которые являются вершинами треугольника.

ColorR, ColorG, ColorB содержат цвет треугольника.

Поля KOt, KPr, KRas, KDif, KBlik, содержат оптические коэффициенты поверхности треугольника.

O - номер объекта, которому принадлежит данный треугольник.

XC, YC, ZC, R - координаты центра и радиус сферической оболочки треугольника.

PaintType - способ закраски треугольника.

TNom - номер текстуры, которая наложена на треугольник.

Массив Tek содержит текстурные координаты, каждой вершины треугольника.

Запись треугольника не содержит координат вершин, она содержит ссылки на вершины. Таким образом, сразу несколько треугольников, могут ссылаться на одну и ту же вершину.

Это дает большую экономию памяти, так как общую для всех треугольников вершину нужно описать всего один раз.

Это упрощает изменение координат вершины. Если бы координаты вершин хранились непосредственно в записи треугольника, то пришлось бы изменить все записи треугольников, включающие данную вершину. В данном случае надо изменить координаты только одной точки.

Очень удобно поворачивать, объекты. Если необходимо повернуть заданный объект, достаточно пробежать по всем его точкам и изменить их координаты.

Настройки цвета, коэффициентов и сглаживания у каждого треугольника свои, а не одинаковые у всех треугольников объекта. Это дает большую свободу в формировании сцены.

Коэффициенты затухания и преломления задаются в записи объекта, так как они характеризуют весь объект целиком.

Данная организация не обладает избыточностью, все треугольники и вершины описываются ровно один раз.

К недостаткам можно отнести то, что получение координат вершин треугольника по ссылке занимает больше времени, чем если бы мы читали их непосредственно из записи треугольника.

Иерархические оболочки

Для хранения иерархических оболочек используется массив Shapes. Он состоит из записей:

 

TShape=record

tip: integer;

S: integer;

G: TSpisok;

S1: integer;

G1: TSpisok;

Low: array [1..8] of integer;

NLow: integer;

XC,YC,ZC,R: real;

end;

 

Первый элемент в массиве Shapes соответствует оболочке, включающей все треугольники сцены.

Поле tip принимает два значения: 1 и 2. Если у оболочки нет подоболочек, то tip равен 2, в противном случае равен 1.

G - это указатель на список треугольников, принадлежащих данной оболочке, S - их число.

G1 - это указатель на список треугольников, которые принадлежат оболочке и очень большие, S1 - их число.

Low - массив содержащий номера подоболочек в массиве Shapes, Nlow - число этих подоболочек.

XC, YC, ZC - координаты центра этой оболочки.

R - радиус оболочки.

Таким образом, в памяти разворачивается дерево. Из корня (т.е. из первой оболочки) его легко обойти. Проще всего это можно сделать, пользуясь рекурсивным алгоритмом.

 

Текстуры

Информация о текстурах хранится в массиве Tex. Для каждой текстуры хранятся ее размеры (lx, ly) и указатель на область памяти, куда загружена текстура (PT).

 

TTex=record

lx,ly: integer;

PT: PRGBI;

end

 

Описание алгоритма

Методы трассировки лучей на сегодняшний день считаются наиболее мощными методами создания реалистических изображений. Универсальность методов трассировки в значительной степени обусловлена тем, что в их основе лежат простые и ясные понятия, отражающие наш опыт восприятия окружающего мира.

Рассмотрим, как формируется изображение. Изображение получается из-за того, что свет попадает в камеру. Выпустим из источников света множество лучей. Назовем их первичными лучами. Часть этих лучей улетит в свободное пространство, а часть попадет на объекты. На них лучи могут преломиться, отразится. При этом часть энергии луча поглотится. Преломленные и отраженные лучи образуют множество вторичных лучей. Далее эти лучи опять же преломятся и отразятся и образуют новое поколение лучей. В конечном итоге часть лучей попадет в камеру и сформирует изображение.

Существуют алгоритмы, работающие по такому алгоритму. Но они крайне неэффективны, так как большинство лучей, исходящих из источника, не попадают в камеру. А приемлемая картинка получается, если трассировать большое число лучей, что займет очень много времени. Данный алгоритм называется прямой трассировкой лучей.

Метод обратной трассировки лучей позволяет значительно сократить перебор световых лучей. Этот метод разработали в 80-х годах Уиттед и Кэй. В этом методе отслеживаются лучи не от источников, а из камеры. Таким образом, трассируется определенное число лучей, равное разрешению картинки.

Предположим, что у нас есть камера и экран, находящийся на расстоянии h от нее. Разобьем экран на квадратики. Дальше будем по очереди проводить лучи из камеры в центр каждого квадратика (первичные лучи). Найдем пересечение каждого такого луча с объектами сцены и выберем среди всех пересечений самое близкое к камере. Далее, применив нужную модель освещения, можно получить изображение сцены. Это самый простой метод трассировки лучей. Он позволяет лишь отсечь невидимые грани.

Но можно пойти дальше. Если мы хотим смоделировать такие явления, как отражение, преломление, нам необходимо из самого близкого пересечения пустить вторичные лучи. Например, если поверхность отражает свет и она идеально ровная, то необходимо отразить первичный луч от поверхности и пустить по этому направлению вторичный луч. Если же поверхность неровная, то необходимо пустить множество вторичных лучей. В программе это не делается, так как это сильно замедлит трассировку.

Если объект прозрачный, то необходимо построить вторичный луч такой, чтобы при преломлении он давал исходный луч. Некоторые тела могут, обладать свойством диффузного преломления. При этом образуется не один, а множество преломленных лучей. Как и в случае отражения, я этим пренебрегаю.

Таким образом, первичный луч, найдя пересечение с объектом, делится в общем случае на два луча (отраженный и преломленный). Далее эти два луча делятся еще на два и так далее.

 

Рис 1.

 

Главной процедурой обратной трассировки лучей в моей программе является процедура Ray. Она имеет следующую структуру:

Если поколение луча равно максимальной глубине рекурсии, то возвращаем среднюю яркость по всем составляющим. Если нет, то идем дальше

Определяем ближайший треугольник, с которым пересекается луч.

Если такого треугольника нет, возвращаем цвет фона, если есть, идем дальше.

Если поверхность, с которой было найдено пересечение, отражает, то формируем отраженный луч и вызываем рекурсивно процедуру Ray с поколением луча, увеличенным на 1.

Если поверхность, с которой было найдено пересечение, преломляет, то формируем преломленный луч и вызываем рекурсивно процедуру Ray с поколением луча, увеличенным на 1.

Определяем итоговую освещенность пиксела, учитывая расположение источников, свойства материала, а так же интенсивности отраженного и преломленного луча.

Я уже рассмотрели ряд ограничений метода трассировки, когда говорили о диффузном преломлении и о неровном зеркале. Рассмотрим и некоторые другие.

Освещать сцену могут только специальные объекты - источники света. Они точечные и не могут поглощать, преломлять и отражать свет.

Свойства отражающей поверхности состоят из двух компонент - диффузной и зеркальной.

При диффузном отражении учитываются только лучи от источников света. Если источник освещает точку, через зеркало (зайчиком), то считается, что точка не освещена.

Зеркальность тоже делится на две составляющие.

reflection - учитывает отражение от других объектов (не источников света)

specular - учитывает блики от источников света

В трассировке не учитываются зависимости от длины волны света:

коэффициента преломления

коэффициента поглощения

коэффициента отражения

Так как я не моделирую диффузное отражение и преломление, то не смогу получить фоновую подсветку. Поэтому вводим минимальную фоновую освещенность. Часто она позволяет просто значительно улучшить качество изображения.

Алгоритм трассировки позволяет рисовать очень качественные тени. Это не потребует большой переделки алгоритма. В него придется кое-что добавить. При расчете освещенности точки необходимо пустить в каждый из источников света "Теневой фронт". "Теневой фронт" - это луч, с помощью которого проверяется, лежит ли что-нибудь между точкой и источником. Если между ними лежит непрозрачный объект, то точка находится в тени. Это значит, что данный источник, не делает свой вклад в итоговую освещенность точки. Если лежит прозрачный объект, то интенсивность источника уменьшается. Прорисовка теней является очень затратной по времени. Так что, в некоторых ситуациях их отключают.

В моей программе есть возможность включить сглаживание изображения. Сглаживание заключается в том, что для определения цвета пиксела. пускается не один луч, а четыре и определяется среднее значение цвета у этих лучей. Если необходимо найти цвет пиксела (i,j), то пускаются 4 луча в точки экранной плоскости с координатами (i-0.25,j-0.25), (i-0.25,j+0.25), (i+0.25,j-0.25), (i+0.25,j+0.25).

 

Составление матрицы

Составление матрицы преобразования из текущей системы координат в систему координат, центр которой находится в точке (x, y, z) и ось OZ которой направлена по (dx, dy, dz). Для такого преобразования необходимо:

совершить сдвиг в точку (x, y, z)

совершить поворот вокруг OZ

совершить поворот вокруг OX

 

1. Матрица сдвига: .

 

2. Необходимо совершить поворот вокруг оси OZ по часовой стрелке на угол α.

 

.

Матрица поворота, таким образом, будет равна:

 

 

3. Необходимо совершить поворот вокруг оси OX по часовой стрелке на угол β.

 

.

 

Матрица поворота, таким образом, будет равна:

 

 

Умножив M3 на M2, а результат на M1 получим искомую матрицу перехода:

 

 

Программная реализация

Во многих функциях и процедурах в программе в качестве входных и выходных параметров выступают матрицы. Поэтому в программе введен специальный тип:

 

TMatrix=Array [0..11] of real

 

Это массив из 12 элементов типа real. Он представляет собой последовательно записанные три верхние строчки матрицы. Я не включил последнюю строчку, так как она одинаковая у всех матриц преобразования и равна (0, 0, 0,1).

Для операций над матрицами в программе предусмотрены следующие процедуры:

1. Procedure MatrixAB (var Res: TMatrix; const M1,M2: TMatrix)

Процедура умножает матрицу M1 на матрицу M2 и помещает результат в Res.

2. Procedure ShiftMatrix (var M: TMatrix; Z: real)

Создает матрицу перехода из текущей системы координат в систему координат, сдвинутую по оси OZ на z.

Процедура перемещает систему координат, задаваемую матрицей M, по оси OZ на z.

3. Procedure SetMatrix (var M: TMatrix; dx,dy,dz,x,y,z: real) overload

Создает матрицу перехода из текущей системы координат в систему координат, находящуюся в точке (x,y,z), ось OZ которой направлена по вектору (dx,dy,dz).

4. Procedure SetMatrix (var M: TMatrix; dx,dy,dz: real) overload

Создает матрицу перехода из текущей системы координат в систему координат, ось OZ которой направлена по вектору (dx,dy,dz).

Преобразование координат

Для преобразования координат точки из одной системы координат в другую необходимо умножить матрицу преобразования на столбец координат точки.

 

 

Для преобразования точки из одной системы координат в другую в программе существует процедура Trans (const M: TMatrix; var F: TPoint; const V: TPoint).

В V содержатся координаты точки, координаты которой надо преобразовать.

В F содержатся результат.

M - матрица преобразования.

В процедуру Ray передается только матрица перехода из глобальной системы координат в систему, связанную с лучом (Mi).

Процедура находит координаты вторичного луча в новой системе координат.

Составляет матрицу перехода из текущей системы в систему, связанную с лучом (Li+1).

Умножает матрицы Mi+1=Li+1Mi

Вызывает рекурсивно Ray с параметром Mi+1

 

Оболочки

 

В алгоритме трассировки лучей от 70 до 90 процентов временных затрат занимает процедура определения пересечений луча с объектами сцены. Если перебирать все объекты сцены, то время будет пропорционально Cn, где С - количество пикселей, а n - число объектов на сцене. Улучшить алгоритм можно, если каким-нибудь образом попробовать сократить число перебираемых объектов. Очень простой, но эффективной является идея иерархических оболочек. Предположим, что нам надо изобразить содержимое полки с посудой. Проведем мысленно большую сферу вокруг полки, так чтобы она включала и полку, и посуду на ней. Затем сферу вокруг каждого предмета посуды. Теперь представим себе процесс рендеринга. Проверяем, пересекается ли луч с самой большой сферой. Если нет, то это значит, что луч не пересекает внутренние оболочки, переходим к другому лучу. Если пересекает, то смотрим пересечение луча с подсферами данной сферы. Как видно из такого примера, многие лучи могут совершить всего одну проверку и отсеяться.

При построении оболочек необходимо, чтобы главная оболочка целиком включала все ее подоболочки, иначе не будет работать правило: "Если луч не пересекает главную оболочку, то он не пересекает и все ее подоболочки". Так же при построении оболочек желательно, чтобы оболочки, имеющие один порядок вложенности, пересекались по как можно меньшему объему. Это улучшит эффективность алгоритма. Метод оболочек помогает сделать время рендеринга пропорциональным Clog (n).


Текстурирование

 

Собственно текстурирование

Поставим в соответствие каждому треугольнику формулы преобразования координат точек треугольника в текстурные координаты:

 

 

Определим коэффициенты a,b,c,d,e,f.

Поставим в соответствие каждой вершине треугольника нужную текстурную координату.

 

 

Мы получили две системы линейных уравнений. Системы будут иметь единственное решение в том случае, если определитель системы не равен нулю. Определим его значение.

 

 

Это условие соответствует тому, что три точки треугольника лежат на одной прямой. Если это так, то треугольник не текстурируем.

В противном случае определяем коэффициенты. Точка пересечения треугольника и луча имеет во вспомогательной системе координат нулевые координаты X и Y.

Поэтому XT=C и YT=F. Имеет смысл искать только коэффициенты С и F.

 

 

Далее вызывается, описанная выше процедура GetTexPoint, с текстурными координатами round (C) и round (F). Получаем цвет нужной нам точки треугольника.

 

Закраска Фонга

 

В программе есть возможность сгладить выборочно нужные треугольники. Для этого в атрибутах треугольника есть флаг PaintType. Если он равен True, совершается сглаживание Фонга. Если равен False, то треугольник не сглаживается. Для удобства в программе введены две константы Const_Paint_Fong и Const_Paint_Flat, равные соответственно True и False. Наличие такого флажка, делает возможным строить практически любые по форме тела.

Закраска Фонга заключается в следующем:

Определяются нормали в вершинах грани

Определяются внешние нормали у всех граней, содержащих данную вершину

Нормаль в вершине равна среднему значению нормалей прилежащих граней

Билинейной интерполяцией вычисляется нормаль в каждом пикселе.

В данной программе первый шаг алгоритма не осуществляется. Необходимо еще при моделировании сцены определить значение нормалей в вершинах. Второй шаг алгоритма использует метод использованный в текстурировании. Мы ставим в соответствие каждому треугольнику формулы преобразования координат точек треугольника в x,y,z компоненты нормали:

 

 

Опуская вычисления, определим с, f, e.

 

 

Вычисленные значения являются значениями нормали в точке пересечения луча и треугольника.

Закраска Фонга является очень трудоемкой, она намного медленнее закраски Гуро, так как приходится интерполировать три величины и приходится каждый раз совершать пересчет освещенности. Но она является наиболее качественной, так как дает реалистичные блики и качественные плавные изменения яркости на гладких телах. К недостаткам метода можно отнести то, что при создании последовательных кадров закраска может заметно меняться от кадра к кадру.

 

Освещение

 

Модель освещения Уиттеда

В данной программе я применил модель освещения Уиттеда. Она задается следующей формулой:

 

 

Ka - коэффициент рассеянного отражения.

Kd - коэффициент диффузного отражения.

Ks - коэффициент зеркальности.

Kr - коэффициент отражения.

Kt - коэффициент преломления.

Ia - интенсивность фонового освещения.

Id - интенсивность, учитываемая для диффузного рассеивания.

Is - интенсивность, учитываемая для зеркальности.

Ir - интенсивность излучения, приходящего по отраженному лучу.

It - интенсивность излучения, приходящего по преломленному лучу.

С - цвет поверхности.

Фактически формула представляет собой сумму всех световых потоков, отраженных и преломленных в данной точке и попавших в глаз наблюдателя.

При расчете освещенности, необходимо посчитать не одну формулу, а три (по каждой компоненте света: красной, синей и зеленой). При этом вместо С используется нужная компонента цвета поверхности, вместо Ir и It нужные компоненты излучения, приходящего по отраженному и преломленному лучу. Эти значения будут возвращены процедурами Ray, вызванными для преломленного и отраженного лучей.

 

Диффузное отражение

Этот вид отражения присущ матовым поверхностям. Матовой можно считать такую поверхность, размер шероховатостей которой уже настолько велик, что падающий луч рассеивается равномерно во все стороны. Такой тип отражения характерен, например, для гипса, песка, бумаги. Диффузное отражение описывается законом Ламберта, согласно которому интенсивность отраженного света пропорциональна косинусу угла между направлением на точечный источник света и нормалью к поверхности.

 

, где θ - угол между нормалью и направлением на источник.

 

Косинус угла между двумя векторами можно посчитать по формуле:

 

.

 

Соответственно cos (θ) можно посчитать по формуле

 

.

 

Так как нормаль - это единичный вектор, то

 


Поэтому, для расчета диффузной интенсивности в формуле Уиттеда необходимо просуммировать все Icosθ для каждого, видимого из данной точки, источника.

 

Зеркальное отражение

Падающий луч, попадая на слегка шероховатую поверхность реального зеркала порождает, не один отраженный луч, а несколько лучей, рассеиваемых по различным направлениям. Зона рассеивания зависит от качества полировки и может быть описана некоторым законом распределения. Как правило, форма зоны рассеивания симметрична относительно линии идеального зеркально отраженного луча. К числу простейших, но достаточно часто используемых, относится эмпирическая модель распределения Фонга, согласно которой интенсивность зеркально отраженного излучения пропорциональна cospα. α - угол отклонения от линии идеально отраженного луча. Показатель p находится в диапазоне от 1 до 200 и зависит от качества полировки.

 

.

 

α - угол между вектором наблюдения и вектором отражения луча из данного источника (R и S).

Но можно поступить наоборот. Можно найти угол между отражением S и L, он будет равен первому. Но в данной процедуре выгодно искать угол между S и L. Это дает экономию в расчетах. Так как во вспомогательной системе координат падающий луч (S) и ось OZ совпадают. Поэтому отраженный луч (W) ищется очень просто:

 

Wx=-Nx*Ny

Wy=-Ny*Nz

Wz=0,5-Nz2


Поэтому

 

 

Для расчета зеркальности в формуле Уиттеда необходимо просуммировать все Icospα для каждого, видимого из данной точки, источника.

 

Фоновая освещенность

Постоянная рассеянного света вводится для того, чтобы учесть фоновую освещенность, образующуюся при вторичных и третичных отражениях.

Полностью формула Уиттеда будет выглядеть:

 

 

Интенсивности излучений, приходящих по отраженному и преломленному лучу умножаются на , где R - расстояние, пройденное лучом в среде, а δ - коэффициент затухания света в среде. Таким образом, я предусматриваю затухание света в среде.

 

Прозрачность

В программе есть возможность для разного моделирования прозрачности. Для включения той или иной модели необходимо нажать соответствующую кнопку в опциях.

Простая модель.

Если включена простая модель, то при попадании луча на прозрачный объект формируется не преломленный луч, а луч параллельный падающему. Коэффициенты пропускания и отражения берутся из свойств объекта.

Модель преломления.

Если включена эта модель, то при попадании луча на прозрачный объект формируется преломленный луч. В этой модели коэффициент пропускания и отражения в сумме дают

 

1-Kd-Ks-Ka (Part).

 

Если коэффициент преломления объекта, в который входит луч больше 10000, то формируется только отраженный луч, поскольку преломленный луч в такой оптически плотной среде будет иметь очень малую интенсивность. Коэффициент отражения в этом случае равен Part, вся энергия пойдет на отражение.

Если коэффициент преломления объекта меньше 10000, то определяем, соответствует ли угол падения луча углу полного внутреннего отражения.

Если это угол полного внутреннего отражения, то преломленный луч не формируется, формируется только отраженный луч, с коэффициентом отражения, равным Part.

Если это не угол полного внутреннего отражения, то формируются и преломленный, и отраженный луч. Зависимость между энергией преломленного и отраженного луча выражает формула Френеля:

 

 

Она определяет долю отраженной энергии. Доля пропущенной энергии равна 1-F. Соответственно, коэффициент отражения устанавливается равным Part*F, а преломления Part* (1-F).

Данная модель дает наиболее качественные результаты, поскольку происходит плавный, переход в область полного внутреннего отражения.

 

Технологическая часть

 

Интерфейс программы

 

Вывод изображения в программе осуществляется в поле главной формы. При изменении разрешения картинки форма автоматически изменит свои размеры.

Меню главной формы состоит из пунктов: "Преобразования", "Фигура", "Опции", "Рендеринг".

При выборе пункта "Рендеринг", произойдет просчет изображения с текущими параметрами источников света, камеры и вывод его на экран.

При выборе пункта "Фигура", можно выбрать из развернувшегося списка сцену, которую необходимо изобразить.

При выборе пункта "Преобразования" на экране появится форма, с помощью которой можно повернуть или сместить объекты сцены, изменить положение камеры, а так же менять выполнять различные действия над источниками света.

При выборе пункта "Опции" на экране, так же появится форма, в которой можно менять параметры рендеринга.

 

 

Форма преобразований:


Форма делится на три части:

верхняя часть отвечает за преобразования над сценой.

средняя отвечает за преобразования над камерой.

нижняя позволяет управлять источниками освещения.

Над каждой частью помещена кнопка. Если одна из частей видна, то нажатие на кнопку приведет к тому, что ее место займет нижняя часть. А повторное нажатие к тому, что нижняя часть сдвинется вниз, а текущая появится снова. Такая организация позволяет свернуть неиспользуемые части, чтобы сэкономить место на экране.

Сцена.

Над сценой возможны преобразования переноса и поворота. Для того чтобы совершать поворот необходимо поставить галочку в соответствующем поле. А для осуществления операций сдвига, убрать эту галочку.

Повороты возможны вокруг осей OX, OY, OZ. Для каждой оси выделена своя строчка с полем для ввода угла и двумя кнопками. Для поворота необходимо ввести в поле, соответствующее нужной оси, угол поворота и нажать на одну из двух кнопок. При нажатии на "+" поворот осуществится на положительный угол, при нажатии на "-" - на отрицательный угол.

Для переноса вдоль какой-либо оси необходимо ввести в соответствующую ячейку величину, на которую нужно сдвинуть и нажать опять же на одну из кнопок. При нажатии на "+", сдвиг осуществится на введенное значение, а при нажатии на "-", на величину, противоположную введенной. Для того чтобы все преобразования производились и над источниками света нужно поставить галочку в поле "Изменять источники света".

Камера.

Для камеры тоже существует переключатель между режимами сдвига и поворота. Повороту соответствует поднятый флажок.

Для поворота камеры вверх или вниз необходимо ввести в первое поле угол поворота и нажать "+" для поворота вверх или "-" для поворота вниз.

Для поворота камеры влево или вправо необходимо ввести угол поворота во второе поле и нажать "+" для поворота вправо или "-" для поворота влево.

Для поворота камеры по часовой стрелке или против часовой действуем аналогично, для поворота по часовой надо нажать "+", против часовой "-".

Перемещению камеры соответствует опущенный флажок.

Все аналогично операциям со сценой. Первая строчка позволяет двигаться вверх-вниз, вторая - вправо-влево, а третья - взад-вперед.

Источники света.

Управлять источниками света позволяет третья часть формы. На форме есть две кнопки со стрелками. Эти кнопки предназначены для того, чтобы листать источники света. По мере просмотра источников можно видеть все их характеристики (на форме расположены поля, в которых высвечиваются координаты, тип, интенсивность по трем составляющим и другие характеристики источника). Все параметры источника можно менять. Чтобы это сделать необходимо:

Найти с помощью стрелок нужный источник.

В поля характеристик источника ввести нужные значения.

Нажать кнопку изменить.

Обязательными параметрами для всех источников являются координаты и интенсивность по 3 составляющим. Если источник является обычным (т.е. светящим во все стороны), то этих параметров достаточно. Если же источник светит в конусе, то необходимо ввести направление и угол, в каком светит источник. Если источник второго типа, то можно поставить галочку в пункте затухание. В этом случае интенсивность источника будет максимальна на образующей конуса и постепенно снижается ближе к краям. На краях интенсивность равна нулю.

Можно добавлять источники света. Для этого необходимо листать вправо все источники до тех пор, пока не станет активной кнопка "Добавить". Далее необходимо нажать на эту кнопку. В сцену добавится источник, расположенный в центре глобальной системы координат, с единичными интенсивностями по всем компонентам. Далее нужно задать нужные характеристики у этого источника, как было показано раньше.

 

 

Форма опций

 

С помощью формы опций можно просмотреть все настройки, с которыми будет производиться рендеринг. В форме приведены следующие настройки:

Включено, сглаживание или нет.

Включены тени или нет.

Включено ли качественное моделирование эффекта преломления

Глубина трассировки

Разрешение получаемого изображения

Расстояние от камеры до экранной плоскости.

Все эти настройки можно менять. Для этого нужно ввести в поля новые значения и нажать "OK".


Тест № 1

Рассмотрим сцену, состоящую из треугольников, равномерно расположенных в пространстве так, чтобы расстояние между треугольниками, было значительно больше их линейных размеров. Поставим условие, что изображение сцены должно занимать весь экран. Проанализируем зависимость времени от числа треугольников в такой сцене.

 

 

1,43

3,45

4,53

5,24

5,76

6,06

0



Поделиться:


Последнее изменение этой страницы: 2020-03-14; просмотров: 93; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.138.122.4 (0.232 с.)