Краткое описание промышленных способов получения серной кислоты 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Краткое описание промышленных способов получения серной кислоты



Производство серной кислоты из серусодержащего сырья включает несколько химических процессов, в которых происходит изменение степени окисления сырья и промежуточных продуктов. Это может быть представлено в виде следующей схемы:

 

 

где I – стадия получения печного газа (оксида серы (IV)),

II – стадия каталитического окисления оксида серы (IV) до оксида серы (VI) и абсорбции его (переработка в серную кислоту).

В реальном производстве к этим химическим процессам добавляются процессы подготовки сырья, очистки печного газа и другие механические и физико-химические операции.

В общем случае производство серной кислоты может быть выражено в следующем виде:

 

Сырье  подготовка сырья  сжигание (обжиг) сырья

очистка печного газа  контактирование  абсорбция

контактированного газа  СЕРНАЯ КИСЛОТА

 

Конкретная технологическая схема производства зависит от вида сырья, особенностей каталитического окисления оксида серы (IV), наличия или отсутствия стадии абсорбции оксида серы (VI).

В зависимости от того, как осуществляется процесс окисления SО2 в SО3, различают два основных метода получения серной кислоты.

В контактном методе получения серной кислоты процесс окисления SО2 в SО3 проводят на твердых катализаторах.

Триоксид серы переводят в серную кислоту на последней стадии процесса – абсорбции триоксида серы, которую упрощенно можно представить уравнением реакции:

 

3 + Н2О  Н24

 

При проведении процесса по нитрозному (башенному) методу в качестве переносчика кислорода используют оксиды азота.

Окисление диоксида серы осуществляется в жидкой фазе и конечным продуктом является серная кислота:

 

3 + N2О3 + Н2О  Н24 + 2NО

 

В настоящее время в промышленности в основном применяют контактный метод получения серной кислоты, позволяющий использовать аппараты с большей интенсивностью.

1) Химическая схема получения серной кислоты из колчедана включает три последовательные стадии:

- окисление дисульфида железа пиритного концентрата кислородом воздуха:

 

4FеS2 + 11О2 = 2Fе2S3 + 8SО2,

 

- каталитическое окисление оксида серы (IV) избытком кислорода печного газа:

 

2SО2 + О2  2SО3

 

- абсорбция оксида серы (VI) с образованием серной кислоты:


3 + Н2О  Н24

 

По технологическому оформлению производство серной кислоты из железного колчедана является наиболее сложным и состоит из нескольких последовательно проводимых стадий.

2) Технологический процесс производства серной кислоты из элементарной серы контактным способом отличается от процесса производства из колчедана рядом особенностей. К ним относятся:

– особая конструкция печей для получения печного газа;

– повышенное содержание оксида серы (IV) в печном газе;

– отсутствие стадии предварительной очистки печного газа.

Последующие операции контактирования оксида серы (IV) по физико-химическим основам и аппаратурному оформлению не отличаются от таковых для процесса на основе колчедана и оформляются обычно по схеме ДКДА. Термостатирование газа в контактном аппарате в этом методе осуществляется обычно путем ввода холодного воздуха между слоями катализатора

3) Существует также способ производства серной кислоты из сероводорода, получивший название "мокрого" катализа, состоит в том, что смесь оксида серы (IV) и паров воды, полученная сжиганием сероводорода в токе воздуха, подается без разделения на контактирование, где оксид серы (IV) окисляется на твердом ванадиевом катализаторе до оксида серы (VI). Затем газовая смесь охлаждается в конденсаторе, где пары образующейся серной кислоты превращаются в жидкий продукт.

Таким образом, в отличие от методов производства серной кислоты из колчедана и серы, в процессе мокрого катализа отсутствует специальная стадия абсорбции оксида серы (VI) и весь процесс включает только три последовательные стадии:

1. Сжигание сероводорода:


Н2S + 1,5О2 = SО2 + Н2О

 

с образованием смеси оксида серы (IV) и паров воды эквимолекулярного состава (1: 1).

2. Окисление оксида серы (IV) до оксида серы (VI):

 

2+ 0,5О2 <=> SО3

 

с сохранением эквимолекулярности состава смеси оксида серы (IV) и паров воды (1: 1).

3. Конденсация паров и образование серной кислоты:

 

3 + Н2О <=> Н24

 

таким образом, процесс мокрого катализа описывается суммарным уравнением:

 

Н2S + 2О2 = Н24

 

Существует схема получения серной кислоты при повышенном давлении. Влияние давления на скорость процесса возможно оценить в кинетической области, где практически отсутствует влияние физических факторов. Повышение давления влияет как на скорость процесса, так и на состояние равновесия. Скорость реакции и выход продукта с повышением давления увеличиваются за счет повышения действующих концентраций SO2 и О2 и увеличения движущей силы процесса. Но при увеличении давления так же возрастают производственные затраты на сжатие инертного азота. Так же увеличивается температура в контактном аппарате, т.к. при высоком давлении и невысокой температуре значение константы равновесия мало, по сравнению со схемой под атмосферным давлением.

Большие масштабы производства серной кислоты особенно остро ставят проблему его совершенствования. Здесь можно выделить следующие основные направления:

1. Расширение сырьевой базы за счет использования отходящих газов котельных теплоэлектроцентралей и различных производств.

2. Повышение единичной мощности установок. Увеличение мощности в два-три раза снижает себестоимость продукции на 25 – 30%.

3. Интенсификация процесса обжига сырья путем использования кислорода или воздуха, обогащенного кислородом. Это уменьшает объем газа, проходящего через аппаратуру, и повышает ее производительность.

4. Повышение давления в процессе, что способствует увеличению интенсивности работы основной аппаратуры.

5. Применение новых катализаторов с повышенной активностью и низкой температурой зажигания.

6. Повышение концентрации оксида серы (IV) в печном газе, подаваемом на контактирования.

7. Внедрение реакторов кипящего слоя на стадиях обжига сырья и контактирования.

8. Использование тепловых эффектов химических реакций на всех стадиях производства, в том числе, для выработки энергетического пара.

Важнейшей задачей в производстве серной кислоты является повышение степени превращения SО2 в SО3. Помимо увеличения производительности по серной кислоте выполнение этой задачи позволяет решить и экологические проблемы – снизить выбросы в окружающую среду вредного компонента SО2.

Для решения этой проблемы велось много различных исследований в различных областях: абсорбция SO2, адсорбция, исследования в изменении конструкции контактного аппарата.

Существую различные конструкции контактных аппаратов:

- Контактный аппарат с одинарным контактированием: такой аппарат характеризуется невысокой степенью превращения диоксида серы в триоксид. Недостаток этого аппарата заключается в том, что газ, выходящий из контактного аппарата, имеет высокое содержание диоксида серы, что отрицательно сказывается с экологической точки зрения. Используя данный аппарат, отходящие газы необходимо очистить от SO2. Для утилизации SO2 существует много различных способов: абсорбция, адсорбция,…. Это, конечно, снижает количество выбросов SO2 в атмосферу, но это увеличивает, в свою очередь, количество аппаратов в технологическом процессе, высокое содержание SO2 в газе после контактного аппарата показывает низкую степень использования SO2, поэтому данные аппараты в производстве серной кислоты не используюися.

- Контактный аппарат с двойным контактированием: ДК позволяет достичь того же минимального содержания SO2 в выхлопных газах, что и после химической очистки. Метод основан на известном принципе Ле-Шателье, согласно которому удаление одного из компонентов реакционной смеси сдвигает равновесие в сторону образования этого компонента. Сущность метода заключается в проведении процесса окисления диоксида серы с выделением триоксида серы в дополнительном абсорбере. Метод ДК позволяет перерабатывать концентрированные газы.

- Контактный аппарат с промежуточным охлаждением. Сущность метода заключается в том, что газ, поступающий в контактный аппарат, пройдя через слой катализатора, попадает в теплообменник, там газ охлаждается, затем поступает на следующий слой катализатора. Этот метод так же увеличивает степень использования SO2 и содержание его в выхлопных газах.

 


5. Выбор катализатора

Наиболее активным катализатором является платина, однако она вышла из употребления вследствие дороговизны и легкой отравляемости примесями обжигового газа, особенно мышьяком. Окись железа дешевая, но при обычном составе газа - 7% SO2 и 11% О2 она проявляет каталитическую активность только при температурах выше 625 оС, т.е. когда хр 70%, и поэтому применялась лишь для начального окисления SO2 до достижения хр 50-60%. Ванадиевый катализатор менее активен, чем платиновый, но дешевле и отравляется соединениями мышьяка в несколько тысяч раз меньше, чем платина; он оказался наиболее рациональным и только он применяется в производстве серной кислоты. Ванадиевая контактная масса содержит в среднем 7% V2O5; активаторами являются окислы щелочных металлов, обычно применяют активатор К2О; носителем служат пористые алюмосиликаты. В настоящий момент катализатор применятся в виде соединения SiO2, K и/или Cs, V в различных пропорциях. Такое соединение оказалось наиболее устойчивым к кислоте и наиболее стабильным. Во всем мире его более корректное названия "ванадий - содержащий". Такой катализатор разработан специально для работы с невысокими температурами, что приводит в меньшим выбросам в атмосферу. Кроме того - такой катализ дешевле нежели калий/ванадиевый. Обычные ванадиевые контактные массы представляют собой пористые гранулы, таблетки или кольца.



Поделиться:


Последнее изменение этой страницы: 2020-03-14; просмотров: 245; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.129.45.92 (0.01 с.)