Вероятность случайного события: определение, способы вычисления вероятности.


*Событие – результат (исход) испытания.

*Вероятность события-число характеризующее степень объективной возможности появл-я событий в опыте.

СПОСОБЫ НЕПОСРЕДСТВЕННОГО ВЫЧИСЛЕНИЯ ВЕРОЯТНОСТЕЙ.

Классический

Если исходы опыта можно представить в виде полной группы событий кот несовместны и равновозможны,то вероятность события А м.б. вычислена по формуле:

Р(А)=m:n

m-общее число возможных случаев(общ число случаев)

n-число исходов благоприятствующих событию А(общ число благопр случаев)

благоприятствующий случай-если его появление влечет за собой событие

пример:

1) №:в урне 3 белых и 4 черных шара

А-событие вынуть белый шар.

Р(А)=m:n=3:7-0,43(43%)

m=3,n=3+4

 

2) Вероятность появл-я четного числа очков при однокр брос кости

А-событие выпад-я четн числа очков

Р(А)=m:n=3:6=0,5(50%)

m-благопр случай 3(2,4,6-четн цифры на кости)

n=6(всего цифр)

 

Геометрический

Исп-ся д/вычисл вероятностей события в том случае,когда рез-т испыт-я определ-ся случайным полож-ем точек в некот обл-ти,причем любые полож-я точек в этой обл-ти равновозможны.

Р(А)=Wm:Wn

Wm-размер всей площади

Wn-мера обл-ти,попад в кот благоприятствует событию А.

Примечание:

Единицы измерения обл-тей м.б. самые различн,в завис-ти от смысла задачи(S,V,t)

пример:

1) В некот точке С телеф линии АВ длиной L. Определ вероятность того,что С удал от А на расст не <,чем l

А-событие,что произошло в т.С→Р(А)

Р(А)= Wm:Wn=(L-l):L

 

Статистический

Частотой появл-я события А назыв отношение числа его появл-й к числу произвед опытов

F(A)=m:n

P(A)=lim f(A) (внизу под lim n→∞)=lim m:n(внизу под lim n→∞)

 

Основные элементы комбинаторики: перестановки, размещения, сочетания.

*Событие – результат (исход) испытания.

*Вероятность события-число характеризующее степень объективной возможности появл-я событий в опыте.

Комбинаторика-спец раздел мат-ки интересующийся ? «Сколько различн комбинаций можно сост из задан объектов.

Рассм 3 типа комбинаторики:

Перестановка

Перестановками из n элементов назыв всевозм комбинации из этих элементов,отлич друг от друга порядком располож-я элементов.

Рn=1×2×3…×n=n!(эн-факториал)

Пример:

1) 1,2,3

123; 321; 231; 213; 132; 312

Р3=3!=1×2×3=6 Ответ:6

2) В ауд 5 столов. Сколькими способами м рассад 5 чел.

Р5=5!=120. Ответ: 120

Размещение

Размещениями из n элементов по m элементов называются все возможные комбинации (группы) из этих элементов, содержащие по m элементов в каждой и различающиеся между собой элементами или их расположением.

Аnm=n(n-1)(n-2)…(n-m+1)

Аnm=Pn:Pm-n

Пример:

1) Информация кодируется словами из 4 цифр,цифры в словах не повтор. Сколько м сост слов д/кодир-я информ.

n=10 (0,1,2..9), m=4

A104=10!:(10-4+1!)=10×9×8×7=5040

Ответ: 5040

3. Сочетания

Сочетаниями из n элементов по m элементов (m<n) называются все возможные комбинации (группы) из этих элементов, содержащие по m элементов в каждой и отличающиеся друг от друга, по крайней мере, одним элементом.



Сnm= Аnm: Pm=n!:(m!×(n-m)!)

n!-кол-во чисел

m!×(n-m)!-кол-во групп

пример:

1) в урне 3 белых и 7 черных шаров.Скольк сущ возм-тей вынуть из урны 2 шара одного цвета?

m=2

C32-число возм-тей вытянуть 2 белых шара

C32=3!:(2!1!)=3

C72-число возм-тей вытянуть 2 черных шара

C72=21

С=C32+C72=21+3=24. Ответ: 24

Сумма событий. Теорема сложения вероятностей и следствия из нее.

*Событие – результат (исход) испытания.

*Вероятность события-число характеризующее степень объективной возможности появл-я событий в опыте.

Теорема сложения.

Суммой 2х событий А и В называют событие С состоящее в появлении хотя бы одного из событий А ИЛИ В

Пример:

1) А-событие вынуть из колоды красную карту

В-событие вынуть туза

(рисуются 2 раза 2 кружка, первый раз события несовпад и кружки не пересек, второй раз вынут красный туз-кружки пересек)

С=А+В

Теорема 1.Сложение вероятностей 2х несовместных событий

Вероятность суммы двух несовм событий А и В равна сумме вероятностей этих событий.

Р(А+В)=Р(А)+Р(В)

Если число несовм событий не 2, а более,то данная теорема справедлива,т.е.:

РS(сверху n,снизу i=1)Аi=S(сверху n,снизу i=1) Р(Аi)

Пример:

1) Произв выстрел по мешени сост из 3х зон

Вероятность попадания в первую зону-0,1

Во вторую-0,3

В третью – 0,4

Определ вероятность попадания в мешень.

1. Обозначение событий и их вероятностей.

А1-событие попадания в первую зону

А2-во вторую

А3-в третью

А-событие попадания в мешень

2. Составим расчетную формулу:

А=А123

А1,А2,А3-несовместные события

Р(А)= Р(А1)+Р(А2)+Р(А3)

3. Расчет:

Р(А)=0,1+0,3+0,4=0,8(80%)

 

Противоположные события-если они несовместные и образуют полную группу.

А(с – сверху)-противоположное событие

 

Следствие 1 из теоремы 1:

Сумма вероятностей противоположных событий равна еденице: А(с – сверху)=1

Док-во:

Р(А+А с черточкой)=Р(U)=1 (как вероятность достоверного события)

* Событие назыв достоверным ,если в результате опыта оно обязат произойдет (№:при бросании 2 кубиков выпадет сумма >=2)

События А и А с черточкой – несовместны, тогда по теореме 1:

Р(А+А с черточкой)=Р(А)+Р(А с черточкой)=1

Запись формулы Р(А)+Р(А с черточкой)=1 Р(А)+Р(А с черточкой)=1 в других обозначениях:

p+q=1,

где р- вероятность того, что событие А произошло; q - вероятность того, что событие А не произошло.

Следствие 2 из теоремы 1:

Если событие А12, … Аn образуют полную несовм группу событий, то сумма их вероятностей:

Р(А1)+Р(А2)+…+Р(Аn)=1

S(сверху n,снизу- i=1) Р(Аi)=1

* сумма вероятностей несовместных событий, образующих полную группу, равна единице

Пример:

1) Определить вероятность промаха в условия предудущ задачи:

Р(А с -)=1-Р(А)=1-0,8=0,2(20%)

Теорема 2. Сложение вероятностей 2 совместных событий.

Вероятность суммы двух совместных событий равна сумме вероятностей этих событий минус вероятность их совместного появления (т.е. вероятность произведения)

Р(А+В)=Р(А)+Р(В)-Р(АВ)

Произведением (∩) 2х событий А и В называется событие С,состоящее в проявлении А И В одновременно.

 

Произведение событий. Теорема умножения вероятностей для независисмых событий и следствия из нее.

*Событие – результат (исход) испытания.

*Вероятность события-число характеризующее степень объективной возможности появл-я событий в опыте.

Теорема умножения вероятностей.

О. событие А независимое от В, если вероятность события А не зависит от того,появ ли событие В или нет. В противном случае событие А зависимо от В.

Условная вероятность-Р(А/В)-вероятность события А выше при условии что событие В произошло.

Условная независимость событий.

Если выпад соотношение что:

Р(А/В)=Р(А/В с черточкой)=Р(А)

Р(В/А)=Р(В/Ас черточкой)=Р(В) – независимые события.

Пример:

1) В урне 10 шаров. 7-белых. 3-черных.

Наугад берется 1 шар, потом другой. Найти вероятность того,что оба шара белые.

1. Обозн событий:

А-событие что второй шар белый

В-событие что первый шар белый.

2. Расчеты:

Р(А/В)=(7-1):(10-1)=2/3

Р(А/Вс черточкой)=7:(10-1)=7/9

Р(А/В) ≠Р(А/Вс черточкой)→А,В зависимые.

 

Теорема 3. Умножение вероятностей 2 независимых событий.

Вероятность произведения 2х событий равна произведению вероятности одного из них на условную вероятность другого, вычисляемую при усл что первое событие имело место.

Р(А×В)=Р(А)×Р(В/А)= Р(В)×Р(А/В)

Если А и В независимы,то вероятность 2х событий равна произведению их вероятностей:

Р(А×В)=Р(А)×Р(В)

Если событий больше 2х,то:

Р(∩-сверху n снизу i=1 ×Аi)=∩-сверху n снизу i=1Р(Аi)

Следствие 1

Если события А12, … Аn-равновероятны, т.е. вероятность

Р(А1)=Р(А2)=…=Р(Аn)=Ру, то

Р(∩-сверху n снизу i=1 ×Аi)=Рn

Следствие 1 (совместны)

Если события А12, … Аn-независимы, но м.б. совместны, то вероятность появл хотя бы одного из них определ формулой:

Р>=1=1-(1-Р(А1))(1-Р(А2))…(1-Р(Аn))

Р(А1)=Р(А2)=…=Р(Аn)=Р

Р>=1=1-(1-Р)n

Пример:

1) Определить вероятность исправной работы цепочки состоящей из 2х элементов.

а) случай параллельного соединения

б) последовательного

если вероятность исправной работы первого 0.5, второго 0,6

решение:

1. Обозн событий:

А1-событие исправной работы 1ого элемента

А2-второго

2. Расчет формулы:

а) А=А12(или 1 или 2 событие, события совсм могут произойти одноврем) необх применить формулу вероятности суммы 2х совм событий:

Р(А)=Р(А1)+Р(А2)-Р(А1×А2)

Вероятность двух независ событий равна произведению их вероятностей.

б) А=А1×А2

Р(А)=Р(А1)×Р(А2)

3. Расчеты:

а) Р(А)=0,5+0,6-0,5*0,6=0,8(80%)

б) Р(А)=0,5*0,6=30%

Условная вероятность. Условие зависимости событий. Теорема умножения вероятностей.

*Событие – результат (исход) испытания.

*Вероятность события-число характеризующее степень объективной возможности появл-я событий в опыте.

Формула полной вероятности.

*Событие – результат (исход) испытания.

*Вероятность события-число характеризующее степень объективной возможности появл-я событий в опыте.

 

Пусть треб определ вероятность события А,кот может произойти только вместе с одним из событий:Н12, … Hn образующих полную группу несовместных событий

Данные события называются ГИПОТЕЗЫ поэтому формула полн вер им вид:

Р(А)=S(сверху n,снизу i=1) Р(Нi)× Р(А/Нi)

Полн вероятность события А равна сумме произведения вероятностей гипотез на условные вероятности событий.

По данным событиям требования к гипотезам: несовместные,сост полн группу
Пример:

1) Имеется 3 урны. В первой-4 белых,6 черных шаров,во второй-3 и 5,в третьей только белые. К одной из урн подх и выним шар. Какова вероятность вытащить белый?

1. Обозн событий:

А-событие, что вынутый шар белый

Н1- гипотеза,шар вынут из 1 урны, Н2-из второй, Н3-из третьей.

2. Расчет формула:

Р(А)=S(сверху 3,снизу i=1) Р(Нi)× Р(А/Нi) *3-т.к. 3 урны

3. Расчеты:

Р(Н1)= Р(Н2)= Р(Н3)=1/3- вероятность что он подойдет к урне

Р(А/Н1)=4:(4+6)=0,4(40%)

Р(А/Н2)=3/8

Р(А/Н3)=1

Р(А)=1/3*4/10+1/3*3/8+1/3*1=59%

*59% означают,что при проведении достаточно большого кол-ва опятов в одинак условиях в средем в 59 случаях из 100 будет вынут белый шар.

2) Из 2х швейных фабрик поступ на базу внешне одинак изделия. С 1ой фабрики поступ втрое больше изделий,чем со второй. Вероятность брака изд с первой фабрике 0,1, со второй 0,05. Найти вероятность того, что наудачу взятое изделии окаж НЕ браков.

1. А-событие, что изделие вытащ из урны БЕЗ брака

Н1-гипотеза,что изд будет с первой фабрики, Н2-со второй

2. Расчетная формула: Р(А)=S(сверху 2,снизу i=1) Р(Нi)× Р(А/Нi) *2-т.к. 2 фабрики

3. Р(Н1)* Р(Н2)=3/4*1/4

Р(А/Н1)=1-0,1=0,9 – вероятность без брака, а нам дан брак, значит 1-…

Р(А/Н2)=1-0,05=0,95

Р(А)=9/10*3/4+1/4*95/100=91%

 

3) Предприятие выпуск за смену изделие 3х видов в кол-ве 160,430,360 шт. каждого вида. ОТК ставит штамп «Брак» или «Экспорт». Найти вероятность того,что наудачу взятое изделие пойдет на экспорт,если вероятность этого для каждого изделия вида 1,2,3=0.9, 0,8 и 0,6 соотв-но.

1. А-событие, что изделие пойдет на экспорт

Н1-гипотеза,изделие 1ого вида Н2-2ого вида Н3-3его вида

2. Р(А)=S(сверху 3,снизу i=1) Р(Нi)× Р(А/Нi) *3-т.к. 3 вида изделий

3. Р(Н1)=160/950

Р(Н2)= 430/950

Р(Н3)=360/950

Р(А)= 160/950*0,9+430/950*0,8+360/950*0,6=74%

Теорема гипотез (формула Байеса)

*Событие – результат (исход) испытания.

*Вероятность события-число характеризующее степень объективной возможности появл-я событий в опыте.

 

Формула Байеса исп д/определ вероятности гипотезы после испытания,когда событие А УЖЕ имело место.

Если событие А уже произошло,какие-то гипотезы отпадут,значит уменьшится их кол-во. А след-но каким-то образом изменятся их вероятности.

Теорема. Вероятность гипотезы после испытания собятия А,кот уже произошло опред по формуле:

Р(Нi /А)= (Р(Нi)× Р(А/Нi)):(S(сверху n,снизу i=1) Р(Нi)× Р(А/Нi))

Вероятность равна произведению вероятности до испытания на условную вероятность события делить на полную вероятность события.

Пример:

1) В пирамиде 5 винтовок.3-с оптикой,2-без.Вероятность попад из оптич винт-0,95,без-0,7. После выстрела из наугад взятой винтовки мишень оказалась поражена. Что вероятнее: стреляли из винт с оптикой или без?

1. Обозн событий и их вероятностей:

А-событие попадания в цель

Н1-гипотеза,из опт винтовки

Н2-без оптики

2. Расчетн формулы:

Вероятность гипотезы Нi до испытания на условную вероятность события,делить на полн вероятность события:

Р(Н1 /А)= (Р(Н1)× Р(А/Н1)):(S(сверху 2,снизу i=1) Р(Нi)× Р(А/Нi))

Р(Н2 /А)= (Р(Н2)× Р(А/Н2)):(S(сверху 2,снизу i=1) Р(Нi)× Р(А/Нi))

3. Расчеты:

Р(Н1)=3/5 *3-винт с оптикой,5-всего винтовок

Р(Н2)=2/5

Р(А/Н1)=95/100

Р(А/Н2)=70/100

Р(Н1 /А)=(3/5*95/100):( 3/5*95/100+2/5*70/100)=57/85

Р(Н2 /А)=( 2/5*70/100):( 3/5*95/100+2/5*70/100)=28/85

Ответ:Вероятнее что стреляли из оптич винтовки.

2) С 3х конвееров поступ на склад детали в кол-ве 150,300,350 шт. вероятность брака 0,3 0,2 0,2. Наудачу взятая дет НЕбрак. Найти вероятность того,что деталь с третьего конвеера.

1. А-событие что деталь небрак

Н1-гипотеза,что с первого конвеера

Н2-со второго

Н3-с третьего.

2. Р(Н3 /А)= (Р(Н3)× Р(А/Н3)):(S(сверху 2,снизу i=1) Р(Нi)× Р(А/Нi))

3. Р(Н1)=m/n=150/(150+300+350)=150/800

Р(Н2)= 300/800

Р(Н3)=350/800

Р(Н1)+Р(Н2)+Р(Н3)=1

Р(А/Н1)=1-0,3=0,7

Р(А/Н2)=1-0,2=0,8

Р(А/Н3)=1-0,2=0,8 *0,7 0,8 0,8-имела место та или иная гипотеза.

Р(Н3 /А)=(7/16*8/10):(3/16*7/10+3/8*8/10+7/16*8/10)=44,8%









Последнее изменение этой страницы: 2016-04-07; Нарушение авторского права страницы

infopedia.su не принадлежат авторские права, размещенных материалов. Все права принадлежать их авторам. Обратная связь