Характеристики системы передачи данных 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Характеристики системы передачи данных



Основными качественными показателями системы передачи информации являются:

• пропускная способность;

• достоверность;

• надежность работы.

Пропускная способность системы (канала) передачи информации – наибольшее теоретически достижимое количество информации, которое может быть передано по системе за единицу времени. Пропускная способность системы определяется физическими свойствами канала связи и сигнала. От пропускной способности канала зависит максимально возможная скорость передачи данных по этому каналу. Для определения максимально возможной скорости надо знать три основных параметра канала связи и три основных параметра сигнала, по нему передаваемого.

1. Параметры канала:

Fkполоса пропускания канала связи, или иначе полоса частот, которую канал может пропустить, не внося заметного нормированного затухания сигнала;

•Hkдинамический диапазон, равный отношению максимально допустимого уровня сигнала в канале к уровню помех, нормированного для этого типа каналов;

•Tkвремя, в течение которого канал используется для передачи данных.

2. Параметры сигнала:

Fsширина спектра частот сигнала, под которой понимается интервал по шкале частотного спектра, занимаемый сигналом;

Hsдинамический диапазон, представляющий собой отношение средней мощности сигнала к средней мощности помехи в канале;

Tsдлительность сигнала, то есть время его существования.

Произведение трех названных параметров определяет, соответственно:

Объем канала связи:

(1)

Объем сигнала:

(2)

 

На основе соотношения доказанное Шенноном можно рассчитать максимально возможную скорость передачи данных по каналу:

(3)

 

где С – максимально возможная скорость в битах в секунду,

F – ширина полосы пропускания канала связи в герцах,

Ps – мощность сигнала,

Pш – мощность шума.

Из этого соотношения (так же как из предыдущих) следует, что увеличить скорость передачи данных в канале связи можно или увеличив мощность сигнала, или уменьшив мощность помех. Увеличение мощности сигнала ограничено величиной допустимого уровня мощности сигнала в канале и мощностью передатчика (мощные передатчики имеют большие габариты и стоимость). Уменьшения мощности помех можно достигнуть, применяя хорошо экранированные от помех кабели (что тоже не дешево). Но и это еще не все трудности. Главное, что скорость зависит от логарифма соотношения сигнал/шум, поэтому, например, увеличение мощности передатчика в два раза при типичном соотношении Рsш = 100 даст увеличение максимально возможной скорости только на 15 %.

Скорость передачи информации измеряется в битах в секунду и в бодах. Количество изменений информационного параметра сигнала в секунду измеряется в бодах. Бод – это такая скорость, когда передается один сигнал (например, импульс) в секунду, независимо от величины его изменения. Бит в секунду соответствует единичному изменению сигнала в канале связи и при простых методах кодирования сигнала, когда любое изменение может быть только единичным, можно принять, что: 1 бод – 1 бит/с; 1 Кбод = 103 бит/с; 1 Мбод = 106 бит/с и т. д.

В случае, если элемент данных может быть представлен не двумя, а большим количеством значений какого-либо параметра сигнала, то изменение сигнала может быть не единичным, 1 бод > 1 бит/с.

Например, если измеряемыми (информационными) параметрами сигнала являются фаза и амплитуда синусоиды, причем различаются четыре значения фазы и два значения амплитуды, то информационный сигнал может иметь 23 – 8 различимых состояний. Тогда скорость передачи данных СП с тактовой частотой 9600 Гц будет 9600 бод, но 9600 * 3 = 28 800 бит/с.

Достоверность передачи информации – передача информации без ее искажения.

Надежность работы – полное и правильное выполнение системой всех своих функций.

Передатчик и приемник, или иначе аппаратура передачи данных (АПД), непосредственно связывают терминальные устройства – оконечные устройства (источник и приемник информации) с каналом связи. Примерами АПД могут служить модемы, терминальные адаптеры, сетевые карты и т. д. АПД работает на физическом уровне, отвечая за передачу и прием сигнала нужной формы и мощности в физическую среду (линию связи).

В составе СП большой протяженности может использоваться и дополнительная аппаратура для улучшения качества сигнала («усиления» сигнала) и для формирования непрерывного физического или логического канала между абонентами. В качестве этой аппаратуры могут выступать повторители, коммутаторы, концентраторы, маршрутизаторы, мультиплексоры. Промежуточная аппаратура иногда образует достаточно сложную так называемую первичную сеть, но никакой функциональной нагрузки не несет – она должна быть незаметна (прозрачна) для абонента.

 

Контрольные вопросы

 

1. В чем заключается суть восприятия информации?

2. Что общего и в чем различие между сбором и регистрацией информации?

3. Как реализуется автоматизированное свертывание информации?

4. Назовите характеристики запоминающих устройств, предназначенных для хранения больших объемов информации.

5. В чем заключается сущность поиска информации?

6. Назовите виды информационного поиска.

7. Что включает в себя система передачи информации?


Глава 6

ИНСТРУМЕНТАЛЬНЫЕ СРЕДСТВА

ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ


Технические средства

 

Орудия и средства (инструменты) производства являются необходимым компонентом любой технологии. Не являются исключением и информационные технологии, инструментальную базу которых образуют технические, программные и лингвистические средства.

Инструментальные средства информационных технологий – совокупность технических программных и лингвистических средств, обеспечивающих реализацию информационных процессов.

В составе технического обеспечения информационных технологий (с некоторой долей условности) различают следующие группы средств:

• компьютерная техника (ЭВМ и периферийные устройства), обеспечивающая электронное представление информации и автоматизацию всех информационных процессов;

• телекоммуникационные средства и системы, обеспечивающие передачу информации на расстояние;

• полиграфическая, копировальная и множительная техника, предназначенная для копирования и тиражирования информации;

• средства записи и воспроизведения аудиовизуальной информации (фото-, теле- видео-, киноизображения и звука);

• оргтехника (офисная техника), предназначенная для механизации и автоматизации конторского труда и управленческой деятельности.

Условностьподобной классификации связана с нарушением единства основания и принципа непересекаемости делений: одни и те же средства (например, компьютерные) представлены во всех пяти группах; а копировально-множительная техника и средства связи широко используются в офисе.

В контексте наших рассуждений имеет смысл классифицировать технические средства в разрезе информационных процессов, для реализации которых они предназначены.

1. Средства сбора (регистрации) и ввода (записи) информации:

• персональные компьютеры – средства ввода текстовой, табличной, графической, аудиовизуальной и иной информации и записи ее на машиночитаемые носители;

• сканеры – средства оптического ввода – автоматического считывания текста или изображения на бумажном носителе с последующим преобразованием его в формат, доступный для обработки и хранения в ЭВМ;

• дигизайтеры – средства бесклавиатурного ввода текста и графических изображений в ЭВМ;

• пишущие машины (механические, электрические, электронные) – средства изготовления бумажных (тестовых и табличных) документов;

• оргавтоматы – комплекс электромеханических и электронных средств автоматизации процесса составления, редактирования и изготовления текстовых и табличных документов;

• диктофоны – средства записи звуковой (преимущественно речевой) информации на различные носители (пленочные, магнитные, оптические) часто с целью преобразования ее в текстовую информацию;

• магнитофоны – средства записи аудиальной информации;

• фото-, кино-, теле-, видеокамеры – средства записи статичных и движущихся изображений и аудиовизуальной информации;

• измерительная техника (датчики, приборы, установки) – средства фиксации и измерения сигнала, извещающего о наступлении контролируемых событий и др.

2. Средства семантической и технической обработки информации:

• компьютеры (микрокомпьютеры, персональные, портативные, карманные, большие, сверхбольшие) – средства автоматизированной обработки цифровой информации;

• монтажное оборудование – средства обработки (монтажа) аудиальной, визуальной, аудиовизуальной, мультимедийной информации (цифровые и аналоговые устройства монтажа звука и изображения, монтажные столы);

• средства репрографии и оперативной полиграфии – оборудование для копирования и тиражирования документов (средства фотокопирования, диазокопирования, электрофотографии, термографии, электронно-искрового копирования, ризографического копирования, микрофильмирования; оборудование для гектографической, трафаретной, офсетной печати);

• средства технической обработки носителей информации (фальцевальные, перфорирующие и резательные машины, машины для уничтожения бумаг и др.);

• средства технической обработки документов (скрепляющее, склеивающее и переплетное оборудование, машины для нанесения защитных покрытий на документы);

• средства технической обработки корреспонденции (конвертовскрывающие, адресовальные, штемпелевальные, маркировальные машины и устройства, машины для уничтожения бумаг и т. п.) и др.

3. Средства храпения информации:

компьютеры – средства хранения электронных документов и данных (серверы БД, файловые серверы, серверы приложений и др., локальные компьютеры);

• носители информации (бумажные, пленочные, магнитные, оптические, голографические, микроносители, перфоносители);

• канцелярские средства хранения документов (мультифоры, папки, планшеты, контейнеры и др.);

• картотеки (плоские, вертикальные, элеваторные, вращающиеся и др.) и картотечное оборудование;

• офисная мебель (шкафы, столы, стеллажи, сейфы и др.).

4. Средства поиска информации:

• автоматизированные ИПС (электронные каталоги, банки данных, электронные библиотеки, Web-pecypcы Интернет и др.);

• механизированные ИПС – ИПС, основанные на использования перфо- и микроносителей информации, осуществляющие поиск методом механической сортировки записей и кодов специальными устройствами (счетно-перфорационные машины, считывающие устройства, селекторы);

• ручные ИПС (карточные каталоги и картотеки, справочно-поисковый аппарат печатных изданий и др.).

5. Средства передачи информации:

• локальные, региональные, глобальные, корпоративные вычислительные сети – средства электронной связи, передачи на расстояние компьютерной информации;

• средства (аппаратура) электрической, радио-, телевизионной связи (телефонные, телеграфные, факсимильные аппараты, радио, телевизионные передатчики и приемники и др.).

• каналы связи – средства передачи акустических, оптических и электрических сигналов – делятся на беспроводные (радиосвязь, спутниковая связь) и проводные (кабельная связь: коаксиальный кабель, незащищенная витая пара, защищенная витая пара, оптоволоконный кабель);

• транспортные средства – средства механической доставки документов (тележки для перевозки документов внутри помещений, лифтовое оборудование, транспортеры, конвейеры, пневматическая почта, автомобильный и иной транспорт и др.).

6. Средства вывода информации: видеомониторы, мультимедийные проекторы, плазменные панели – средства отображения электронной информации;

• принтеры (матричные, струйные, лазерные) – печатающие устройства, обеспечивающие перенос машиночитаемой текстовой, числовой и графической информации на бумажный носитель;

• плоттеры (графопостроители) – устройства, обеспечивающие перенос машиночитаемой графической информации на бумажный носитель;

• аудиотехника – средства вывода звуковой информации (радиоприемники, проигрыватели, магнитофоны, аудиоплееры, музыкальные центры и др.);

• видеотехника – средства вывода аудиовизульной информации (телевизоры, домашние кинотеатры, кинопроекционная аппаратура, видеосистемы, DVD-плееры и др.).

Оценивая состояние и тенденции развития технической базы информационных технологий, специалисты отмечают:

1) приоритетное внимание разработчиков и рост спроса на цифровые устройства в сравнении с аналоговыми (так, в ведущих странах мира рост числа домашних компьютеров превышает рост числа телевизоров);

2) число компьютеров в личном пользовании становится сопоставимым с числом машин, используемых на предприятиях и в организациях;

3) динамичное развитие сетей спутникового и кабельного телевещания, радиовещания в FM-диапазоне (цифровая технология, позволяющая имитировать звучание реальных музыкальных инструментов за счет синтеза нескольких генераторов сигнала);

4) опережающее развитие системы компьютерных телекоммуникаций, мобильной телефонной связи в сравнении с другими способами дистанционной передачи информации.

 

Программные средства

 

Программные средства (ПС) информационных технологий – это компьютерные (машинные) программы, представленные на языке программирования или в машинном коде описания действий, которые должна выполнить ЭВМ в соответствии с алгоритмом решения конкретной задачи или группы задач.

Программные средства информационных технологий на самом общем уровне делят на два класса:

• базовые ПС

• прикладные ПС.

К базовым программным средствам, в свою очередь, относят:

• языки программирования;

• операционные системы (ОС);

• оболочки операционных систем;

• сервисные средства и утилиты.

Языки программирования – это формализованные языки, предназначенные для описания программ и алгоритмов решения задач на ЭВМ. Языки программирования разделяются на две основные категории:

• языки высокого уровня [high-level language] – языки программирования, средства которых обеспечивают описание задач в наглядном, легко воспринимаемом виде, удобном для программиста. Они не зависят от внутренних машинных кодов ЭВМ любого типа, поэтому программы, написанные на языках высокого уровня, требуют перевода в машинные коды программами транслятора либо интерпретатора. К языкам высокого уровня относят Фортран, ПЛ/1, Бейсик, Паскаль, Си, Ада и др.;

• языки низкого уровня [low-level language] – языки программирования, предназначенные для определенного типа ЭВМ и отражающие его внутренний машинный код (условные синонимы «машинный язык», «машинно-ориентированный язык» и «язык ассемблера»).

Операционная система – программа (или совокупность программ), управляющая основными действиями ЭВМ, ее периферийными устройствами и обеспечивающая запуск всех остальных программ, а также взаимодействие с пользователем. ОС, в частности, выполняет следующие функции: тестирование работоспособности вычислительной системы и ее настройка при первоначальном включении; обеспечение синхронного и эффективного взаимодействия всех аппаратных и программных компонентов вычислительной системы в процессе ее функционирования, управление памятью; управление вводом-выводом информации; управление файловой системой (ресурсами); управление взаимодействием процессов; диспетчеризация процессов; защита и учет использования ресурсов и др. Исторически выделяют две основные линии развития ОС:

1) СР/М > QDOS > DOS> MS-DOS > Windows;

2) Multics > UNIX > Minix > Linux.

В зависимости от функциональных возможностей различают:

• однопользовательские однозадачные системы (MS-DOS, DR-DOS);

• однопользовательские многозадачные системы (OS/2, Windows 95/98, Solaris);

• многопользовательские системы, поддерживающие сетевой режим работы (Windows NT, Windows 2000, Mac OS, Novel Netware, системы семейства UNIX).

Для мобильных ПК и телефонов разрабатывают специализированные ОС: EPOC (обеспечивает доступ в Интернет); Palm OS (ориентирована на повышенную разрешающую способность монитора) и др.

Оболочки операционных систем (командно-файловые процессоры) предназначены для организации взаимодействия пользователя с вычислительной системой. В компьютерах нового поколения оно осуществляется более простыми методами, чем в ранних операционных системах (например, Norton Commander или Windows версий до 3.11). Часто программные оболочки создаются не просто с целью облегчения работы, но и для предоставления пользователю дополнительных возможностей, которые отсутствуют в стандартном программном обеспечении.

Сервисные средства используются для расширения функций ОС, обеспечения надежной работы технических средств (например, драйверов, периферийных устройств) и выполнения компьютером специальных типовых задач (диагностика, управление памятью, борьба с компьютерными вирусами, форматирование дисков, архивация файлов и т. п.).

В зависимости от назначения и принципа действия различают антивирусные программы:

• сторожа (детекторы) – предназначенные для обнаружения зараженных вирусами файлов;

• фаги (доктора) – предназначенные для обнаружения и обезвреживания известных им вирусов (AidsTest, DrWeb, Norton Antivirus);

• ревизоры – контролирующие наиболее уязвимые для вирусов компоненты ЭВМ, позволяющие вернуть поврежденные файлы и системные области в исходное положение (Adinf);

• резидентные мониторы (фильтры) – перехватывающие обращения к операционной системе в случае угрозы заражения (Vsafe, NAVTSR);

• комплексные – сочетающие функции нескольких специализированных программ (AntiViral Toolkit Pro by Eugene Kaspersky – AVP – антивирус Касперского).

Архиваторы обеспечивают компактное представление файлов и дисков для целей передачи данных на другие компьютеры, создания страховых копий. Наиболее популярны архиваторы WinZip, WinRAR, WinARJ.

Утилиты различают по объектам и назначению: тестирование функциональных блоков компьютера, обслуживание машинных носителей, обслуживание файловой системы, администрирование компьютерных сетей. К числу наиболее распространенных утилит относятся: Norton Utilities, SiSoft Sandra for Windows, Quarterdeck, WinProbe, Manifest и др.

Программы увеличения производительности магнитных дисков предназначены для повышения скорости доступа к дисковым данным: программы дефрагментации (SpeeDisk и Defrag), программы кэширования дисков (SmartDrive) и др.

Программы обслуживания магнитных дисков предназначены для выполнения диагностики, коррекции и восстановления дисковых данных (Image, Calibrate, Undelete, Unerase, ScanDisk, Norton Disk Doctor, Rescue) и др.

Прикладные (специальные) программные средства (приложения) – это отдельные прикладные программы или пакеты прикладных программ, предназначенные для решения конкретных задач, связанных со сферой деятельности пользователей (управленческая, переводческая, проектно-конструкторская и т. п.), или конкретной предметной областью (проблемно-ориентированные информационные системы, БД).

Система управления базами данных (СУБД) – комплекс программных и лингвистических средств, предназначенных для реализации, актуализации, хранения и эксплуатации БД. По сути, это набор программных модулей, который работает под управлением конкретной операционной системы и выполняет следующие функции: описание данных на концептуальном и логическом уровнях; загрузку данных; хранение данных; поиск и ответ на запрос (транзакцию); внесение изменений; обеспечение безопасности и целостности. СУБД обеспечивает пользователя следующими лингвистическими средствами: языком описания данных, языком манипулирования данными, прикладным (встроенным) языком данных.

Современные СУБД (Oracle, SQL, Server, Informix, Sybase, Visual FoxPro Standard3.0, Access из пакета Microsoft Office и др.) поддерживают функционирование распределенных информационных систем, многопользовательский режим работы, гарантируют защиту информации от потери или искажения в случае любых сбоев (включая физический отказ диска), обладают надежными средствами защиты от несанкционированного доступа, позволяют применять широкий диапазон программных и аппаратных средств, обеспечивают эффективное использование ресурсов системы при любых изменениях нагрузок.

Пакет прикладных программ (ППП) – набор (комплект) программ и связанной с ними документации (лицензионное свидетельство, паспорт, инструкции пользователя и т. п.), предназначенный для решения задач в определенной области деятельности: управление предприятием, организацией (1С: предприятие), статистические расчеты (Statistica), автоматизированное проектирование (AutoCAD), библиотечная, издательская, бухгалтерская и т. п.

Прикладные программные средства дифференцируются по различным основаниям: назначению, области применения и др., однако эти классификации не являются строгими. Поэтому назовем наиболее распространенные программные средства, предназначенные для решения конкретных информационных задач:

1. Текстовые процессоры (Microsoft Word, Лексикон, Lotus Word Perfect, Corel Word Pro, Sun Star Office Writer и др.).

2. Электронные таблицы (Microsoft Excel, Corel Quattro Pro, Lotus 1-2-3, Sun Star Office Calc и др.).

3. Личные информационные системы (органайзеры) – программы, предназначенные для планирования рабочего времени, составления протоколов встреч, расписаний, ведения записной и телефонной книжек (Microsoft Outlook, Lotus Organizer, Lotus Notes, Sun Star Office Schedule и др.).

4. Программы проверки орфографии (Lingvo Corrector, Stylus Lingvo Office).

5. Программы-переводчики (Stylus General for Windows, Promt XT идр.).

6. Программы распознавания текста, предназначенные для преобразования считанной сканером информации в текстовое представление(OCR CuneiForm 2.0, Fine Reader).

7. Программы презентационной графики (Microsoft Power Point, Lotus Freelance Graphics, Corel Presentations, Sun Star Office Impress и др.).

8. Редакторы Web-страниц (Microsoft Front Page, Netscape Composer, Macromedia Free Hand и др.).

9. Программные средства мультимедиа (Sierra Club Collection, Outer Space Collection, Mozart и др.).

10. Редакторы растровой графики (Adobe Photoshop, Corel Photo-Paint и др).

11. Редакторы векторной графики (CorelDraw, Adobe Illustrator и др.).

12. Настольные издательские системы (Adobe Page Maker, Quark Xpress, Corel Ventura, Microsoft Publisher и др.).

13. Браузеры – программы, предназначенные для организации взаимодействия пользователя с удаленными абонентами или сетевыми информационными ресурсами, для просмотра страниц Web-серверов (Microsoft Internet Explorer, Netscape Navigator, Collabra Share 2.0, Web Sewer и др.).

14. Почтовые клиенты (Microsoft Outlook, Microsoft Outlook Express, Microsoft Internet Mail, Netscape Messenger, The Bat и др.).

15. Средства разработки ПО (Borland Delphi, Microsoft Visual Basic, Borland C++ Builder, Microsoft Visual++ и др.).

Основные тенденции развития программного обеспечения:

· стандартизация программных средств позволяет использовать их на разных аппаратных платформах и в среде разных операционных систем, а также обеспечить взаимодействие с широким кругом приложений;

· реализация принципа модульности – объектно-ориентированное программирование – позволяет осуществлять «сборку» ориентированных на конкретные задачи приложений из разных модулей, снижая тем самым трудоемкость, стоимость работ и повышая надежность программного обеспечения;

· интеллектуализация интерфейса пользователя, обеспечение его интуитивной понятности, приближение языка общения с компьютером к профессиональному языку пользователя;

· интеллектуализация возможностей программ и программных систем за счет использования методов искусственного интеллекта позволяет сделать приложения более «умными» и решать все более сложные, плохо формализуемые задачи;

· ориентация на расширение круга пользователей программных продуктов;

· «программирование» товаров массового потребления (телевизоров, телефонов и т. п.) расширяет их возможности и улучшает потребительские характеристики.

 

 

Лингвистические средства

 



Поделиться:


Последнее изменение этой страницы: 2017-02-22; просмотров: 386; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.46.36 (0.082 с.)