Моделирование стохастических систем. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Моделирование стохастических систем.



Моделирование – построение моделей для исследования и изучения объектов, процессов, явлений.

стохастическое моделирование отображает вероятностные процессы и события. В этом случае анализируется ряд реализаций случайного процесса, и оцениваются средние характеристики.

один подход к классификации математических моделей подразделяет их на детерминированные и стохастические (вероятностные). В детерминированных моделях входные параметры поддаются измерению однозначно и с любой степенью точности, т.е. являются детерминированными величинами. Соответственно, процесс эволюции такой системы детерминирован. В стохастических моделях значения входных параметров известны лишь с определенной степенью вероятности, т.е. эти параметры являются стохастическими; соответственно, случайным будет и процесс эволюции системы. При этом, выходные параметры стохастической модели могут быть как величинами вероятностными, так и однозначно определяемыми.

В зависимости от характера исследуемых реальных процессов и систем математические модели могут быть:

· детерминированные,

· стохастические.

В детерминированных моделях предполагается отсутствие всяких случайных воздействий, элементы модели (переменные, математические связи) достаточно точно установленные, поведение системы можно точно определить. При построении детерминированных моделей чаще всего используются алгебраические уравнения, интегральные уравнения, матричная алгебра.

Стохастическая модель учитывает случайный характер процессов в исследуемых объектах и системах, который описывается методами теории вероятности и математической статистики.

Типовые схемы. Приведенные математические соотношения представляют собой математические схемы общего вида и позволяют описать широкий класс систем. Однако в практике моделирования объектов в области системотехники и системного анализа на первоначальных этапах исследования системы рациональнее использовать типовые математические схемы.

В качестве детерминированных моделей, когда при исследовании случайные факторы не учитываются, для представления систем, функционирующих в непрерывном времени, используются дифференциальные, интегральные, интегродифференциальные и другие уравнения, а для представления систем, функционирующих в дискретном времени, конечные автоматы и конечно-разностные схемы.

В качестве стохастических моделей (при учете случайных факторов) для представления систем с дискретным временем используются вероятностные автоматы, а для представления системы с непрерывным временем – системы массового обслуживания и т. д.

Перечисленные типовые математические схемы, естественно, не могут претендовать на возможность описания на их базе всех процессов, происходящих в больших системах. Для таких систем в ряде случаев более перспективным является применение агрегативных моделей. Агрегативные модели (системы) позволяют описать широкий круг объектов исследования с отображением системного характера этих объектов. Именно при агрегативном описании сложный объект (система) расчленяется на конечное число частей (подсистем), сохраняя при этом связи, обеспечивающие взаимодействие частей.

Таким образом, при построении математических моделей процессов функционирования систем можно выделить следующие основные подходы:

· непрерывно-детерминированный (например, дифференциальные уравнения);

· дискретно-детерминированный (конечные автоматы);

· дискретно-стохастический (вероятностные автоматы);

· непрерывно-стохастический (системы массового обслуживания);

· обобщенный, или универсальный (агрегативные системы).

 

 

20. Модель популяции.

Модель – это мысленно представляемая или материально реализованная система, которая, отображая или воспроизводя объект исследования, способна замещать его так, что ее изучение дает новую информацию о нем. Рассмотрим примеры динамических систем - модели популяций. Популя­ция (от лат. populatio - население) - термин, используемый в различных разделах биологии, а также в генетике, демографии и медицине.

Популяция - это человеческое, животное или растительное население неко­торой местности, способной к более-менее устойчивому самовоспроизводству, относительно обособленное (обычно географически) от других групп.

Описание популяций, а также происходящих в них и с ними процессов, воз­можно путем создания и исследования динамических моделей.

Пример 1. Модель Мальтуса.

Скорость роста пропорциональна текущему размеру популяции. Она описы­вается дифференциальным уравнением х = ах, где α - некоторый параметр, оп­ределяемый разностью между рождаемостью и смертностью. Решением этого уравнения является экспоненциальная функция x(t) = х0е*.

Если рождаемость превосходит смертность (α > 0), размер популяция не­ограниченно и очень быстро возрастает. Понятно, что в действительности этого не может происходить из-за ограниченности ресурсов. При достижении некоторого критического объема популяции модель перестает быть адекватной, поскольку не учитывает ограниченность ресурсов. Уточнением модели Мальтуса может слу­жить логистическая модель, которая описывается дифференциальным уравнением Ферхюльста:

 

где xs - «равновесный» размер популяции, при котором рождаемость в точности компенсируется смертностью. Размер популяции в такой модели стремится к рав­новесному значению

Пример 2. Модель «хищник - жертва».

Модель взаимодействия «хищник - жертва» независимо предложили в 1925 - 1927 гг. Лотка и Вольтерра. Два дифференциальных уравнения модели­руют временную динамику численности двух биологических популяций жертвы и хищника. Предполагается, что жертвы размножаются с постоянной скоростью а их численность убывает вследствие поедания хищниками. Хищники же размно­жаются со скоростью, пропорциональной количеству пищи и умирают естествен­ным образом.

Допустим, что на некоторой территории обитают два вида животных: кро­лики (питающиеся растениями) и лисы (питающиеся кроликами). Пусть число кроликов -х, число лис -у. Используя модель Мальтуса с необходимыми поправ­ками, учитывающими поедание кроликов лисами, приходим к следующей системе, носящей имя модели Вольтерра - Лотки:

х =(α - су)х;

y = (-β + dx)y.

Эта система имеет равновесное состояние, когда число кроликов и лис по­стоянно. Отклонение от этого состояния приводит к колебаниям численности кро­ликов и лис, аналогичным колебаниям гармонического осциллятора. Как и в слу­чае гармонического осциллятора, это поведение не является структурно устойчи­вым: малое изменение модели (например, учитывающее ограниченность ресурсов, необходимых кроликам) может привести к качественному изменению поведения. Например, равновесное состояние может стать устойчивым, и колебания числен­ности будут затухать. Возможна и противоположная ситуация, когда любое малое отклонение от положения равновесия приведет к катастрофическим последствиям, вплоть до полного вымирания одного из видов.



Поделиться:


Последнее изменение этой страницы: 2017-02-10; просмотров: 1491; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.217.203.172 (0.006 с.)