Биосинтез аминокислот семейства глутамата. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Биосинтез аминокислот семейства глутамата.



К этому семейству относятся: глутамат, глутамин, пролин, и аргинин. Первые две аминoкислоты образуются из a-кетоглутарата, а аминогруппы берут свое начало из молекул аммиака. Пролин синтезируется из глутамата. Синтез аргинина также осуществляется из глутамата. Орнитин превращается в аргинин в ходе нескольких реакций, представленных в цикле мочевины.

Биосинтез аминокислот семейства аспартата. К семейству аспартата относятся: аспартат, аспарагин, лизин, треонин, изолейцин и метионин. Синтезируются из аспартата, который, в свою очередь, образуется из оксалоацетата—промежуточного продукта ЦТК — в ходе реакции трансаминирования. Донором аминогруппы при этом выступает глутамат. Аспартат служит предшественником для синтеза аспарагина. Лизин, метионин и треонин синтезируются из производных аспартата, а изолейцин — из треонина.. Углеродный скелет метионина формируется из гомосерина, атом серы происходит от цистеина, а донором метильной группы служит N-метилтетрагидрофолиевая кислота. Треонин служит источником четырех из шести углеродных атомов в молекуле изолейцина.

Биосинтез аминокислот семейства пирувата. Из пирувата синтезируются: аланин, валин и лейцин.
Аланин образуется в реакции трансаминирования, где донором аминогруппы служит глутамат. Синтез валина и лейцина имеет несколько общих стадий и начинается с образования ацетолактата. 2-Ацетолактат восстанавливается в диоксиизовалериановую кислоту, что сопровождается миграцией метильной группы. Диоксиизовалерат дегидратируется в 2-кетоизовалерат. Этот продукт может превращаться в валин в реакции трансаминирования с участием глутамата, а также конденсироваться с ацетил-СоА и в ходе нескольких реакций преобразовываться в лейцин. Донором аминогруппы в образовании лейцина также является глутамат.

Б иосинтез аминокислот семейства серина. В семейство входят серин, цистеин и глицин. Предшественником этих аминокислот является 3- фосфоглицерат — промежуточный продукт гликолиза. 3-Фосфоглицерат окисляется в 3-фосфогидроксипируват, а затем аминируется с участием глутамата в 3-фосфосерин и дефосфорилируется в серин. Серин служит субстратом для синтеза глицина и цистеина. Превращение серина в цистеин связано с замещением атома кислорода боковой цепи на атом серы, донором которого является метионин.

Биосинтез аминокислот семейства пентоз. Гистидин, триптофан, фенилаланин и тирозин синтезируются при участии пятиуглеродного промежуточного соединения пентозофосфатных путей — рибозо-5-фосфата, на основании чего их и объединяют в семейство пентоз. Процесс биосинтеза гистидина довольно сложен и осуществляется с участием 5-фосфорибозил-1-пирофосфата, АТР и глутамина. Хоризмат служит основным предшественником пути биосинтеза триптофана. Хоризмовая кислота используется также для синтеза фенилаланина, т. е. на этапе ее формирования пути биосинтеза двух незаменимых ароматических аминокислот — триптофана и фенилаланина — расходятся (отсюда и название хоризмата, которое происходит от греческого слова, означающего «вилка»). Заменимая кислота тирозин может синтезироваться из фенилаланина путем его гидроксилирования, а также из префеновой кислоты после ее декарбоксилирования и аминирования.

Закономерности биосинтеза аминокислот.

1) углеродные скелеты аминокислот берут свое начало от промежуточных продуктов гликолиза (3-фосфоглицерат, фосфоенолпируват, пируват), пентозофосфатных путей (рибозо-5-фосфат и эритрозо-4-фосфат), ЦТК (оксалоацетат и a-кетоглутарат);

2) донором аминогрупп для большинства протеиногенных аминокислот служит глутамат, реже—глутамин; реакции, в которых аминогруппа аминокислоты переносится на кетокислоту, называются «реакции трансаминирования»;

3) биосинтез многих аминокислот осуществляется «семействами», для которых используются общие предшественники; многие аминокислоты сами служат субстратами для синтеза других аминокислот;

4) многие стадии биосинтеза аминокислот требуют притока энергии и сопровождаются гидролизом АТР (стадии синтеза гистидина, пролина, метионина, аспарагина, глутамина, аргинина); кроме этого, используется энергия активированных молекул, участвующих в синтезе; наконец, из катаболических и амфиболических процессов изымаются промежуточные продукты, которые могли бы обеспечить клетке запасание энергии;

5) многие этапы биосинтеза аминокислот требуют участия восстановительных эквивалентов (NADH и NADPH), которые могли бы быть окислены в дыхательной цепи и обусловить энергетический выигрыш.



Поделиться:


Последнее изменение этой страницы: 2017-02-17; просмотров: 264; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.141.193.158 (0.005 с.)