Модуль 1 Информационные системы и в управлении организацией 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Модуль 1 Информационные системы и в управлении организацией



ВВЕДЕНИЕ

 

Цель дисциплины – формирование у будущих менеджеров знаний и навыков относительно современных информационных систем и технологий, их рационального использования, а также практических навыков эффективного использования современных информационных технологий в процессе осуществления управленческой деятельности в организации.

Основной задачей изучения дисциплины является теоретическая и практическая подготовка студентов по следующим вопросам:

- сущность информационных систем и их значение в управлении современными организациями;

- современное состояние и тенденции развития информационных технологий;

- методология разработки информационных систем, определение их качества и эффективности;

- основные основы управления информационными ресурсами и технологиями;

- стратегическая и оперативная направленность информационных технологий в бизнесе;

- формирование информационной структуры на предприятии;

- использование интегрированных автоматизированных информационных систем в бизнесе;

- типология управленческих информационных систем;

- развитие и внедрения в организации систем поддержки принятия решений;

- определение основных характеристик экспертных систем;

- использование технологий искусственного интеллекта в управлении организациями;

- использование Интернет в управленческой деятельности руководящих кадров;

- применение электронной коммерции в практической деятельности организации;

- осуществление электронных платежей и обеспечения их безопасности;

- создание и использование в организации информационных локальных и региональных сетей Інтранет и Екстранет;

- работа в конкретных автоматизированных информационных системах, которые используются в современных организациях;

- принятие управленческих решений на основании информации, полученной с помощью автоматизированной информационной системы.

Предмет дисциплины: информационные системы и технологии управления различных классов в организации.

Модуль 1 Информационные системы и в управлении организацией

Введение в информационные системы менеджмента

Этапы развития и сущность информационных систем в менеджменте

 

Типология информационных систем в менеджменте организаций

Организационные компоненты информационной системы

 

Выделение организационных компонентов в самостоятельное направление обуславливается особой значимостью человеческого фактора (персонала) в успешном функционировании ИС. Прежде чем внедрять дорогостоящую систему обработки данных; должна быть проведена огромная работа по упорядочению и совершенствованию организационной структуры объекта; в противном случае эффективность ИС будет низкой.

Главная проблема при этом заключается в выявлении степени соответствия существующих функций управления и организационной структуры, реализующей эти функции и стратегию развития фирмы. Средствами достижения цели - совершенствования организационных структур - являются различные методы моделирования.

Под организационными компонентамиИС (рис.3.1) понимается совокупность методов и средств, позволяющих усовершенствовать организационную структуру объектов и управленческие функции, выполняемые структурными подразделениями; определить штатное расписание и численный состав каждого структурного подразделения; разработать должностные инструкции персоналу управления в условиях функционирования СОД.

 


Планирование развития информационных систем менеджмента

Общесистемный подход

Общесистемный подход основывается на предположении, что еще до реализации системы мы некоторым обоснованным способом можем распознать взаимосвязи между частями ее базовой информации. Процессы сбора, хранения и обработки данных про­ектируются и реализуются в рамках всей системы в целом. Хотя этот подход является идеальным, его применение в полном объеме может оказаться весьма трудным из-за практических, политических и социальных проблем. При уже существующей системе проекти­рование идеальной системы может стать просто академическим уп­ражнением, так как ее реализация вызовет радикальные преобра­зования. В самом деле, слепое, без определенной технологии, ис­пользование проектировщиками этого подхода может привести к крушению иллюзий, что и случается во многих сегодняшних вы­числительных системах.

Однако в организациях, которые еще не имеют разработанных систем, действующих и считающихся удовле­творительными, рассматриваемый подход может быть успешно применен. Он является идеализированным и не может в полном объеме применяться в реальной организации. Как можно было увидеть при рассмотрении шести подходов, стратегия выбора подхода должна формироваться с учетом осо­бенностей конкретной системы. Следует принимать в расчет такие факторы, как размер организации, природа ее деловых операций и опыт. Существенно, что выбор стратегии должен быть произведен после тщательной оценки степени риска и преимуществ возможных подходов.

 

СППР- хранилище данных

 

Специфика работы аналитических систем делает практически невозможным их прямое использование на оперативных данных. Это объясняется различными причинами, в том числе разрозненностью данных, хранением их в форматах различных СУБД и в разных "уголках" корпоративной сети, но, что наиболее важно, неприменимостью структур данных оперативных систем для выполнения задач анализа. Для этих целей создается специализированная среда хранения данных, называемая хранилищем данных (Data Warehouse).

Хранилище данных представляет собой банк данных определенной структуры, содержащий информацию о производственном процессе компании в историческом контексте. Главное назначение хранилища - обеспечивать быстрое выполнение произвольных аналитических запросов.

Согласно исследованию META Group, 90 - 95% компаний списка Fortune 2000 активно применяют хранилища данных, чтобы добиться преимущества в конкурентной борьбе и получить значительно большую отдачу от своих инвестиций. Трехлетнее изучение опыта 62 организаций, проведенное International Data Corporation (IDC) показало, что эти организации в среднем получили 400-процентный возврат своих инвестиций в СППР - системы.

Перечислим главные преимущества хранилищ данных:

Единый источник информации: компания получает выверенную единую информационную среду, на которой будут строиться все справочно-аналитические приложения в той предметной области, по которой построено хранилище. Эта среда будет обладать единым интерфейсом, унифицированными структурами хранения, общими справочниками и другими корпоративными стандартами, что облегчает создание и поддержку аналитических систем. Также, при проектировании информационного хранилища данных особое внимание уделяют достоверности информации, которая попадает в хранилище.

Производительность: физические структуры хранилища данных специальным образом оптимизированы для выполнения абсолютно произвольных выборок, что позволяет строить действительно быстрые системы запросов.

Быстрота разработки: специфическая логическая организация хранилища и существующее специализированное ПО позволяют создавать аналитические системы с минимальными затратами на программирование.

Интегрированность: интеграция данных из разных источников уже сделана, поэтому не надо каждый раз производить соединение данных для запросов требующих информацию из нескольких источников. Под интеграцией понимается не только совместное физическое хранение данных, но и их предметное, согласованное объединение; очистку и выверку при их формировании; соблюдение технологических особенностей и т.д.

Историчность и стабильность: OLTP-системы оперируют с актуальными данными, срок применения и хранения которых обычно не превышает величины текущего бизнес - периода (полугода - год), в то время как информационное хранилище данных нацелено на долговременное хранение информации в течении 10-15 лет. Стабильность означает, что фактическая информация в хранилище данных не обновляется и не удаляется, а только специальным образом адаптируется к изменениям бизнес - атрибутов. Таким образом, появляется возможность осуществлять исторический анализ информации.

Независимость: выделенность информационного хранилища существенно снижает нагрузку на OLTP-системы со стороны аналитических приложений, тем самым производительность существующих систем не ухудшается, а на практике происходит уменьшение времени отклика и улучшение доступности систем.

Наряду с большими корпоративными хранилищами данных широкое применение находят также витрины данных (Data Mart). Под витриной данных понимается небольшое специализированное хранилище для некоторой узкой предметной области, ориентированное на хранение данных, связанных одной бизнес - тематикой. Проект по созданию витрины данных требует меньших вложений и выполняется в очень короткие сроки. Таких витрин данных может быть несколько, скажем витрина данных по доходам для бухгалтерии компании и витрина данных по клиентам для маркетингового отдела компании.

 

Аналитические системы

 

Аналитические системы СППР позволяют решать три основных задачи: ведение отчётности, анализ информации в реальном времени (OLAP) и интеллектуальный анализ данных.

Отчётность. Сервис отчётности СППР помогает организации справиться с созданием всевозможных информационных отчетов, справок, документов, сводных ведомостей и пр., особенно когда число выпускаемых отчетов велико и формы отчётов часто меняются. Средства СППР, автоматизируя выпуск отчётов, позволяют перевести их хранение в электронный вид и распространять по корпоративной сети между служащими компании.

OLAP. OLAP (On-Line Analitycal Processing) - сервис представляет собой инструмент для анализа больших объемов данных в режиме реального времени. Взаимодействуя с OLAP-системой, пользователь сможет осуществлять гибкий просмотр информации, получать произвольные срезы данных, и выполнять аналитические операции детализации, свертки, сквозного распределения, сравнения во времени. Вся работа с OLAP-системой происходит в терминах предметной области.

OLAP-системы являются частью более общего понятия Business Intelligence, которое включает в себя помимо традиционного OLAP-сервиса средства организации совместного использования документов, возникающих в процессе работы пользователей хранилища. Технология Business Intelligence обеспечивает электронный обмен отчетными документами, разграничение прав пользователей, доступ к аналитической информации из Интернет и Интранет.

Интеллектуальный анализ данных или «добыча данных» (Data Mining).

При помощи средств добычи данных можно проводить глубокие исследования данных. Эти исследования включают в себя:

- поиск зависимостей между данными (например, “Верно ли, что рост продаж продукта А обусловлен ростом продаж продукта В?”);

- выявление устойчивых бизнес - групп (например, “Какие группы клиентов, близких по поведенческим и другим характеристикам, можно выделить? Какие характеристики клиентов при этом оказывают наибольшее влияние на классификацию?“);

- прогнозирование поведения бизнес - показателей (например, “Какой объем перевозок ожидается в следующем месяце?“);

- оценка влияния решений на бизнес компании (например, “Как изменится спрос на товар А среди группы потребителей Б, если снизить цену на товар С?“);

- поиск аномалий (например. “С какими сегментами клиентской базы связаны наиболее высокие риски?“).

 

СППР работают в интерактивном (диалоговом) режиме, т.е. обмениваются информацией и выводами с пользователем в форме диалога. Пользователь выбирает модель решения и сообщает системе о своих предпочтениях на множестве критериев в виде значений весовых коэффициентов или результатов парных срав­нений. В зависимости от типа модели и особенностей алгоритма решения могут также задаваться координаты идеальной точки, значения допустимых уступок по критериям, результаты парных сравнений альтернатив по качественным критериям и т.д.

 

Функции СППР

К функциям, реализуемым СППР, предъявляются следующие основные требования:

- обеспечение информационно-поисковых и информационно-справочных услуг;

- оказание помощи в обосновании значений весовых коэффициентов критериев;

- выявление возможных противоречий в предпочтениях пользователя;

- объяснение результатов выбора;

- восстановление или игнорирование недостающих значений показателей качества альтернатив, т.е. обеспе­чение устойчивости системы к неполноте информации.

 

Типы СППР

 

В зависимости от функционального наполнения интерфейса системы выделяют два основных типа СППР: EIS и DSS.

EIS (Execution Information System) – информационные системы руководства предприятия. Эти системы ориентированы на неподготовленных пользователей, имеют упрощенный интерфейс, базовый набор предлагаемых возможностей, фиксированные формы представления информации. EIS-системы рисуют общую наглядную картину текущего состояния бизнес - показателей работы компании и тенденции их развития, с возможностью углубления рассматриваемой информации до уровня крупных объектов компании. EIS – системы – это та реальная отдача, которую видит руководство компании от внедрения технологий СППР.

DSS (Desicion Support System) – полнофункциональные системы анализа и исследования данных, рассчитанные на подготовленных пользователей, имеющих знания, как в части предметной области исследования, так и в части компьютерной грамотности. Обычно для реализации DSS-систем (при наличии данных) достаточно установки и настройки специализированного программного обеспечения поставщиков решений по OLAP-системам и Data Mining.

Такое деление систем на два типа не означает, что построение СППР всегда предполагает реализацию только одного из этих типов. EIS и DSS могут функционировать параллельно, разделяя общие данные и/или сервисы, предоставляя свою функциональность, как высшему руководству, так и специалистам аналитических отделов компаний.


Требования к корпоративным информационным системам

В современных условиях производство не может существовать и развиваться без высоко эффективной системы управления, базирующейся на самых современных информационных технологиях. Постоянно изменяющиеся требования рынка, огромные потоки информации научно-технического, технологического и маркетингового характера требуют от персонала предприятия, отвечающего за стратегию и тактику развития высокотехнологического предприятия быстроты и точности принимаемых решений, направленных на получение максимальной прибыли при минимальных издержках. Оптимизация затрат, повышение реактивности производства в соответствии с возрастающими требованиями потребителей в условиях жесткой рыночной конкуренции не могут базироваться только на умозрительных заключениях и интуиции даже самых опытных специалистов. Необходим всесторонний контроль над всеми центрами затрат на предприятии с применением сложных математических методов анализа, прогнозирования и планирования, основанных на учете огромного количества параметров и критериев. А также необходима стройная система сбора, накопления и обработки информации. Экстенсивные пути решения этой проблемы, связанные с непомерным разрастанием управленческого аппарата, даже при самой хорошей организации его работы не могут дать положительный результат. Переход на современные технологии, реорганизация производства не могут обойти и такой ключевой аспект как управление. И путь здесь может быть только один – создание корпоративной информационной системі, отвечающей ряду жестких требований.

Исторически сложился ряд требований к корпоративным информационным системам (рис. 7.2).

 
 

 


КИС, прежде всего, должна отвечать требованиям комплексности и системности. Она должна охватывать все уровни управления от корпорации в целом с учетом филиалов, дочерних фирм, сервисных центров и представительств, до цеха, участка и конкретного рабочего места и работника. Весь процесс производства с точки зрения информатики представляет собой непрерывный процесс порождения, обработки, изменения, хранения и распространения информации. Каждое рабочее место - будь то рабочее место сборщика на конвейере, бухгалтера, менеджера, кладовщика, специалиста по маркетингу или технолога - это узел, потребляющий и порождающий определенную информацию. Все такие узлы связаны между собой потоками информации, овеществленными в виде документов, сообщений, приказов, действий и т.п.

Таким образом, функционирующее предприятие можно представить в виде информационно-логической модели, состоящей из узлов и связей между ними. Такая модель должна охватывать все аспекты деятельности предприятия, должна быть логически обоснована и направлена на выявление механизмов достижения основной цели в условиях рынка - максимальной прибыли, что и подразумевает требование системности. Достаточно эффективное решение этой задачи возможно только на базе строгого учета максимально возможного обоснованного множества параметров и возможности многокритериальных поливариантных анализа, оптимизации и прогнозирования - то есть комплексности системы.

Информация в такой модели носит распределенный характер и может быть достаточно строго структурирована на каждом узле и в каждом потоке. Узлы и потоки могут быть условно сгруппированы в подсистемы, что выдвигает еще одно важное требование к КИС - модульность построения. Это требование также очень важно с точки зрения внедрения системы, поскольку позволяет распараллелить, облегчить и, соответственно, ускорить процесс инсталляции, подготовки персонала и запуска системы в промышленную эксплуатацию.

Кроме того, если система не создается под конкретное производство, а приобретается на рынке готовых систем, модульность позволяет исключить из поставки компоненты, которые не вписываются в инфологическую модель конкретного предприятия или без которых на начальном этапе можно обойтись, что позволяет сэкономить средства.

Поскольку ни одна реальная система, даже если она создается по специальному заказу, не может быть исчерпывающе полной. В процессе эксплуатации может возникнуть необходимость в дополнениях, а также в силу того, что на функционирующем предприятии могут быть уже работающие и доказавшие свою полезность компоненты КИС, следующим определяющим требованием является открытость. Это требование приобретает особую важность, если учесть, что автоматизация не исчерпываются только управлением, но охватывает и такие задачи, как конструкторское проектирование и сопровождение, технологические процессы, внутренний и внешний документооборот, связь с внешними информационными системами, системы безопасности и т.п.

Любое предприятие существует не в замкнутом пространстве, а в мире постоянно меняющегося спроса и предложения, требующем гибко реагировать на рыночную ситуацию, что может быть связано иногда с существенным изменением структуры предприятия и номенклатуры выпускаемых изделий или оказываемых услуг. Кроме того, в условиях переходной экономики законодательство имеет не устоявшийся, динамично меняющийся характер.

У крупных корпораций, к тому же могут быть экстерриториальные подразделения, находящиеся в зоне юрисдикции других стран или свободных экономических зон. Это означает, что КИС должна обладать свойством адаптивности, то есть гибко настраиваться на разное законодательство, иметь разно языковые интерфейсы, уметь работать с различными валютами одновременно. Не обладающая свойством адаптивности система обречена на очень непродолжительное существование, в течение которого вряд ли удастся окупить затраты на ее внедрение. Желательно, чтобы кроме средств настройки система обладала и средствами развития - инструментарием, при помощи которого программисты и наиболее квалифицированные пользователи предприятия могли бы самостоятельно создавать необходимые им компоненты, которые органично встраивались бы в систему.

Когда КИС эксплуатируется в промышленном режиме, она становится незаменимым компонентом функционирующего предприятия, способным в случае аварийной остановки застопорить весь процесс производства и нанести громадные убытки. Поэтому одним из важнейших требований к такой системе является надежность ее функционирования, подразумевающая непрерывность функционирования системы в целом даже в условиях частичного выхода из строя отдельных ее элементов вследствие непредвиденных и непреодолимых причин.

Чрезвычайно большое значение для любой крупномасштабной системы, содержащей большое количество информации, имеет безопасность.

Требование безопасности включает в себя несколько аспектов:

Защита данных от потери. Это требование реализуется, в основном, на организационном, аппаратном и системном уровнях. Прикладная система, какой является, например автоматизированная система управления (АСУ), не обязательно должна содержать средства резервного копирования и восстановления данных. Эти вопросы решаются на уровне операционной среды.

Сохранение целостности и непротиворечивости данных. Прикладная система должна отслеживать изменения во взаимозависимых документах и обеспечивать управление версиями и поколениями наборов данных.

Предотвращение несанкционированного доступа к данным внутри системы. Эти задачи решаются комплексно как организационными мероприятиями, так и на уровне операционных и прикладных систем. В частности, прикладные компоненты должны иметь развитые средства администрирования, позволяющие ограничивать доступ к данным и функциональным возможностям системы в зависимости от статуса пользователя, а также вести мониторинг действий пользователей в системе.

Предотвращение несанкционированного доступа к данным извне. Решение этой части проблемы ложится в основном на аппаратную и операционную среду функционирования КИС и требует ряда административно-организационных мероприятий.

Предприятие, успешно функционирующее и получающее достаточную прибыль, имеет тенденцию к росту, образованию дочерних фирм и филиалов, что в процессе эксплуатации КИС может потребовать увеличения количества автоматизированных рабочих мест, увеличения объема хранимой и обрабатываемой информации. Кроме того, для компаний типа холдингов и крупных корпораций должна быть возможность использовать одну и ту же технологию управления, как на уровне головного предприятия, так и на уровне любой, даже небольшой входящей в него фирмы. Такой подход выдвигает требование масштабируемости.

На определенном этапе развития предприятия рост требований к производительности и ресурсам системы может потребовать перехода на более производительную программно-аппаратную платформу. Чтобы такой переход не повлек за собой кардинальной ломки управленческого процесса и неоправданных капиталовложений на приобретение более мощных прикладных компонентов, необходимо выполнение требования мобильности.

Простота в изучении - это требование, включающее в себя не только наличие интуитивно понятного интерфейса программ, но и наличие подробной и хорошо структурированной документации, возможности обучения персонала на специализированных курсах и прохождения ответственными специалистами стажировки на предприятиях родственного профиля, где данная система уже эксплуатируется.

Поддержка разработчика. Это понятие включает в себя целый ряд возможностей:

- получение новых версий программного обеспечения бесплатно или с существенной скидкой;

- получение дополнительной методической литературы, консультации по горячей линии;

- получение информации о других программных продуктах разработчика;

- возможность участия в семинарах, научно-практических конференциях пользователей и других мероприятиях, проводимых разработчиком или группами пользователей и т.д.

Естественно, что обеспечить такую поддержку пользователю способна только серьезная фирма, которая устойчиво работает на рынке программных продуктов и имеет довольно ясную перспективу на будущее.

Сопровождение. В процессе эксплуатации сложных программно-технических комплексов могут возникать ситуации, требующие оперативного вмешательства квалифицированного персонала фирмы-разработчика или ее представителя на месте.

Сопровождение включает в себя:

- выезд специалиста на объект заказчика для устранения последствий аварийных ситуаций;

- техническое обучение на объекте заказчика, методическую и практическую помощь при необходимости внести изменения в систему, не носящие характер радикальной реструктуризации или новой разработки.

Подразумевается также установка новых реализаций программного обеспечения, получаемого от разработчика бесплатно силами уполномоченной разработчиком сопровождающей организации или силами самого разработчика.

В свою очередь, прикладная система, каковой является АСУ, выдвигает ряд требований к среде, в которой она функционирует. Средой функционирования прикладной системы являются сетевая операционная система, операционные системы на рабочих станциях, система управления базами данных и ряд вспомогательных подсистем, обеспечивающих функции безопасности, архивации и т.п. Как правило, требования и указания по конкретному набору системного программного обеспечения содержатся в документации по конкретной прикладной системе.

 

Классификация сетей

 

Компьютерные сети можно классифицировать по ряду признаков, в том числе по степени территориального распределения. При этом различают: глобальные, региональные и локальные сети.

Глобальные сети объединяют пользователей, расположенных по всему миру, и часто используют спутниковые каналы связи, позволяющие соединять узлы сети связи и ЭВМ, находящиеся на расстоянии 10 - 15 тыс. км друг от друга.

Региональные сети объединяют пользователей города, области, небольших стран. В качестве каналов связи чаще всего используются телефонные линии. Расстояния между узлами сети составляют 10-1000 км.

Локальные сети ЭВМ связывают абонентов одного или нескольких близлежащих зданий одного предприятия, учреждения. Локальные сети получили очень широкое распространение, так как 80 -90 % информации циркулирует вблизи мест ее появления и только 10 -20 % связано с внешними взаимодействиями. Локальные сети могут иметь любую структуру, но чаще всего компьютеры в локальной сети связаны единым высокоскоростным каналом передачи данных. Расстояния между ЭВМ в локальной сети небольшие - до 10 км. При использовании радиоканалов связи - до 20 км.

 

Топология сети

 

Топология сети - это логическая схема соединения каналами связи компьютеров (узлов сети). Чаще всего в локальных сетях используется одна из трех основных топологий: многоканальная, кольцевая или звездообразная. Большинство других топологий являются производными от перечисленных. Для определения последовательности доступа узлов сети к каналу и предотвращения наложения передач данных различными узлами необходим метод доступа.

Метод доступа - это набор правил, определяющий использование канала передачи данных, соединяющего узлы сети на физическом уровне. Самыми распространенными методами доступа в локальных сетях перечисленных топологий являются Ethernet, Token-Ring, Arcnet, реализуемые соответствующими сетевыми платами (адаптерами). Сетевая плата является физическим устройством, которое устанавливается в каждом компьютере сети и обеспечивает передачу и прием информации по каналам сети.

Сеть многоканальной топологии использует один канал связи, объединяющий все компьютеры. Самым распространенным методом доступа в сетях этой топологии является метод доступа с прослушиванием несущей частоты и обнаружением конфликтов (CSMA/CD).

При этом методе доступа узел, прежде чем послать данные по коммуникационному каналу, прослушивает его, и только убедившись, что канал свободен, посылает пакет. Если канал занят, узел повторяет попытку передать пакет через случайный промежуток времени. Данные, переданные одним узлом сети, поступают во все узлы, но только узел, для которого предназначены эти данные, распознает и принимает их. Характерным примером сети с этим методом доступа является сеть Ethernet.

Сеть кольцевой топологии использует в качестве канала связи замкнутое кольцо из приемопередатчиков, соединенных коаксиальным или оптическим кабелем. Самым распространенным методом доступа в сетях этой топологии является Token-Ring - метод доступа с передачей маркера.

Маркер - это пакет, снабженный специальной последовательностью бит. Он последовательно передается по кольцу от узла к узлу в одном направлении, пока не обнаружит узел, которому предназначен пакет. В этом узле данные принимаются, но маркер не освобождается, а передается по кольцу дальше. Только вернувшись к отправителю, который может убедиться, что переданные им данные благополучно получены, маркер освобождается.

Сеть звездообразной топологии имеет активный центр (АЦ) - компьютер (или иное сетевое устройство), объединяющий все компьютеры сети. АЦ полностью управляет компьютерами, подключенными к нему через центратор, который выполняет функции распределения и усиления сигналов. От надежности АЦ полностью зависит работоспособность сети. В качестве примера метода доступа с АЦ можно привести Arcnet. Это метод доступа также использует маркер для передачи данных.

 


Структура глобальной сети

В общем случае глобальная сеть включает подсеть, к которой подключены компьютеры и терминалы. Допускается подключение компьютеров, объединенных в локальные сети. Подсеть связи состоит из каналов передачи данных и коммуникационных узлов. Компьютеры, за которыми работают пользователи-клиенты, называются рабочими станциями. Компьютеры, являющиеся источниками ресурсов сети, предоставляемых пользователям, называются серверами. Серверы подключаются к глобальным сетям чаще всего через поставщиков услуг доступа к сети - провайдеров. Коммуникационные узлы подсети предназначены для быстрой передачи информации по сети, для выбора оптимального маршрута передачи информации, для коммутации пакетов передаваемой информации. Коммуникационный узел - это либо некоторое аппаратное устройство, либо компьютер, выполняющий заданные функции с помощью соответствующего программного обеспечения. Эти узлы обеспечивают эффективность функционирования сети связи в целом.

Рассмотрим структуру глобальной сети на примере всемирной глобальной сети Internet. До 1995 года сеть Internet контролировалась National Science Foudation (NSF) и имела строго иерархическую трехуровневую структуру. На первом, верхнем уровне этой структуры находилась базовая высокоскоростная магистраль, к которой подключались отдельные сети второго уровня, являющиеся региональными поставщиками услуг доступа к Internet. К этим сетям подключались сети третьего локального уровня: сети предприятий, научных учреждений, учебных заведений.

С развитием Internet и появлением гипертекстовой системы WW (Word Wide Web) многие компании и пользователи пришли к выводу, что эта сеть является недорогим средством проведения различных деловых операций и распространения информации. Это положило начало превращению Internet в коммерческую сеть. При этом она значительно увеличилась и связи перестали представлять трехуровневую иерархическую структуру. Теперь сеть Internet представляет собой совокупность взаимосвязанных коммуникационных центров, к которым подключаются региональные поставщики сетевых услуг и через которые осуществляется их взаимодействие, то есть практически Internet имеет типичную для глобальных сетей структуру. С точки зрения пользователя в Internet выделяются поставщики услуг, поддерживающие информацию. На серверах, и потребители этих услуг - клиенты. Взаимодействие поставщиков с потребителями осуществляется через коммуникационную систему с множеством узлов (рис. 9.1).

 

 
 


Коммутация пакетов

 

Передача в сети сообщения (в том числе файла) происходит пакетами, которые имеют фиксированную длину. Разбивка сообщения на пакеты производится сетевым адаптером (большинство адаптеров используют пакеты длиной от 500 до 4000 байт). Пакет данных аналогично конверту с письмом имеет адрес компьютера, которому он послан, и адрес компьютера, который посылает сообщение. На принимающем компьютере пакеты собираются в сообщение.

 

Маршрутизация

Доставка пакетов в сети осуществляется с помощью коммуникационных узлов, которые могут быть выполнены аппаратно или являются программами на компьютерах. Эти узлы соединяют между собой отдельные компьютеры и сети различных организаций и образуют некоторую подсеть связи. Основной функцией коммутационных узлов является выбор оптимального маршрута доставки пакета получателю - маршрутизация. Каждый коммуникационный узел имеет связи не со всеми другими коммутационными узлами и в функции, как и в функции почтового отделения, входит определение следующего узла маршрута, который позволит наилучшим образом приблизить пакет к пункту назначения.

 

Адресация в Internet

При обмене данными в сети необходимо, чтобы каждый компьютер имел свой уникальный адрес. В локальной сети адреса компьютеров чаще всего определяются адресами сетевых плат, вставленных в компьютеры. Сетевые платы имеют уникальные адреса, устанавливаемые при их изготовлении.

В сетях с протоколом TCP/IP для идентификации сетей и компьютеров используются 32-разрядные IP-адреса. IP-адрес включает номер сети и номер компьютера в ней. Адреса каждой сети выдаются Информационным центром сети Internet (NIC). IP-адреса используются при передаче и приеме сообщений по протоколу TCP/IP. Однако пользователю неудобно использовать такие адреса при организации связи с другим компьютером сети для получения некоторой услуги. Поэтому в Internet введена Доменная система имен (Domain Name System - DNS). В этой системе компьютерам сети даются удобные для пользователя имена, за которыми скрываются соответствующие адреса.

Доменное имя состоит из двух частей: идентификатора предприятия и идентификатора домена (домена верхнего уровня), которые разделяются точкой. Например, microsoft.com - идентификатор домена, который является стандартом при идентификации коммерческих организаций. Идентификатор домена edu является стандартным для организаций образования. В комитете NIC зарегистрировано шесть стандартных идентификаторов доменов - два названных (com и edu), а также gov (правительственные организации), mil (военные организации), org (некоммерческие организации), net (сетевые организации).

 

Услуги Internet



Поделиться:


Последнее изменение этой страницы: 2017-02-07; просмотров: 282; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.220.66.151 (0.098 с.)