Физические уровни технологии Fast Ethernet 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Физические уровни технологии Fast Ethernet



Все отличия технологий Fast Ethernet и Ethernet сосредоточены на физическом уровне (рис. 13.17). Уровни MAC и LLC в Fast Ethernet остались абсолютно теми же, и их опи­сывают прежние главы стандартов 802.3 и 802.2. Поэтому, рассматривая технологию Fast Ethernet, мы будем изучать только несколько вариантов ее физического уровня.

Организация физического уровня технологии Fast Ethernet является более сложной, по­скольку в ней используются три варианта кабельных систем:

§ волоконно-оптический многомодовый кабель (два волокна);

§ витая пара категории 5 (две пары);

§ витая пара категории 3 (четыре пары).

Рис. 13.17. Отличия технологий Fast Ethernet и Ethernet

 

Коаксиальный кабель, давший миру первую сеть Ethernet, в число разрешенных сред передачи данных новой технологии Fast Ethernet не попал. Это общая тенденция многих новых технологий, поскольку на небольших расстояниях витая пара категории 5 позволяет передавать данные с той же скоростью, что и коаксиальный кабель, но сеть получается более дешевой и удобной в эксплуатации. На больших расстояниях оптическое волокно обладает гораздо более широкой полосой пропускания, чем коаксиал, а стоимость сети получается ненамного выше, особенно если учесть высокие затраты на поиск и устранение неисправностей в крупной кабельной коаксиальной системе.

Официальный стандарт 802.3 установил три различных спецификации для физического уровня Fast Ethernet и дал им следующие названия (рис. 13.18):

§ 100Base-TX для двухпарного кабеля на неэкранированной витой паре UTP категории 5 или экранированной витой паре STP типа 1;

§ 100Base-T4 для четырехпарного кабеля на неэкранированной витой паре UTP кате­гории 3,4 или 5;

§ 100Base-FX для многомодового оптоволоконного кабеля с двумя волокнами.

Для всех трех стандартов справедливы перечисленные далее утверждения и характери­стики.

Форматы кадров технологии Fast Ethernet не отличаются от форматов кадров технологий 10-мегабитной сети Ethernet.

Рис. 13.18. Структура физического уровня Fast Ethernet

 

Межкадровый интервал равен 0,96 мкс, а битовый интервал — 10 нс. Все временное параметры алгоритма доступа (интервал отсрочки, время передачи кадра минимальной длины и т. п.), из­меренные в битовых интервалах, остались прежними.

Признаком свободного состояния среды является передача по ней символа простой источни­ка соответствующего кода (а не отсутствие сигналов, как в стандартах Ethernet со скоростью 10 Мбит/с),

Физический уровень включает три элемента.

§ Независимый от среды интерфейс (Media Independent Interface, МII).

§ Уровень согласования нужен для того, чтобы уровень MAC, рассчитанный на интер­фейс AUI, мог работать с физическим уровнем через интерфейс МИ.

§ Устройство физического уровня (Physical Layer Device, PHY) состоит, в свою очередь, из нескольких подуровней (см. рис. 13.17):

o подуровня логического кодирования данных, преобразующего поступающие от уровня MAC байты в символы кода 4В/5В или 8В/6Т (первый метод кодирования используются в версиях 100Base-TX и 100Baase-FX, второй — в версии l00Base- Т4);

o подуровней физического присоединения и зависимости от физической среды (PMD), которые обеспечивают формирование сигналов в соответствии с методом физического кодирования, например NRZI или MLT-3;

o подуровня автопереговоров, который позволяет двум взаимодействующим портам автоматически выбрать наиболее эффективный режим работы, например полуду­плексный или дуплексный (этот подуровень является факультативным).

Интерфейс МII поддерживает независимый от физической среды способ обмена данными между подуровнем MAC и подуровнем PHY. Этот интерфейс аналогичен по назначению интерфейсу AUI классического стандарта Ethernet за исключением того, что интерфейс AUI располагался между подуровнем физического кодирования сигнала (для любых вари­антов кабеля использовался одинаковый метод физического кодирования — манчестерский код) и подуровнем физического присоединения к среде, а интерфейс МП располагается между подуровнем MAC и подуровнями кодирования сигнала, которых в стандарте Fast Ethernet три: FX, ТХ и Т4.

Версия 100Base-T4 носила промежуточный характер, так как она позволяла повысить скорость классического варианта Ethernet в 10 раз, не меняя кабельную систему здания. Так как большинство предприятий и организаций достаточно быстро заменили кабели категории 3 кабелями категории 5, то необходимость в версии 100Base-T4 отпала, и обо­рудование с такими портами перестало выпускаться. Поэтому далее мы рассмотрим детали только спецификаций 100Base-FX и 100Base-TX.

Спецификация 100Base-FX определяет работу протокола Fast Ethernet по многомодово­му оптоволокну в полудуплексном и дуплексном режимах. В то время как в Ethernet со скоростью передачи 10 Мбит/с используется манчестерское кодирование для представ­ления данных, в стандарте Fast Ethernet определен другой метод кодирования — 4В/5В, который мы рассматривали в главе 9. Этот метод к моменту разработки технологии Fast Ethernet уже показал свою эффективность в^етях FDDI, поэтому он без изменений был перенесен в спецификацию 100Base-FX/TX. Напомним, что в этом методе каждые четыре бита данных подуровня MAC (называемых символами) представляются пятью битами. Избыточный бит позволяет применить потенциальные коды при представлении каждого из пяти битов в виде электрических или оптических импульсов.

Существование запрещенных комбинаций символов позволяет отбраковывать ошибочные символы, что повышает устойчивость работы сетей 100Base-FX/TX. Так, в Fast Ethernet признаком того, что среда свободна, стала повторяющаяся передача одного из запрещенных для кодирования пользовательских данных символа, а именно символа простоя источника Idle (11111). Такой способ позволяет приемнику всегда находиться в синхронизме с пере­датчиком.

Для отделения кадра Ethernet от символов простоя источника используется комбинация символов начального ограничителя кадра — пара символов J (11000) и К (10001) кода 4В/5В, а после завершения кадра перед первым символом простоя источника вставляется символ Т (рис. 13.19).

Рис. 13.19. Непрерывный поток данных спецификаций 100Base- FX/TX

 

После преобразования 4-битных порций кодов MAC в 5-битные порции физического уров­ня их необходимо представить в виде оптических или электрических сигналов в кабеле, соединяющем узлы сети. В спецификациях 100Base-FX и 100Base-TX для этого исполь­зуются, соответственно, методы физического кодирования NRZI и MLT-3.

В спецификации 100Ваsе-ТХ в качестве среды передачи данных используется витая пара UTP категории 5 или STP типа 1. Основным отличием от спецификации 100Base-FX (на­ряду с методом кодирования MLT-3) является наличие схемы автопереговоров для выбора режима работы порта»

Схема автопереговоров позволяет двум физически соединенным устройствам, которые поддерживают несколько стандартов физического уровня, отличающихся битовой скоро­стью и количеством витых пар, согласовать наиболее выгодный режим работы. Обычно

процедура автопереговоров происходит при подсоединении сетевого адаптера, который может работать на скоростях 10 и 100 Мбит/с, к концентратору или коммутатору.

Всего в настоящее время определено 5 различных режимов работы, которые могут под­держивать устройства 100Base-TX/T4 на витых парах:

§ 10Base-T;

§ дуплексный режим 10Base-T;

§ 100Base-TX;

§ 100Base-T4;

§ дуплексный режим 100Base-TX.

Режим 10Base-Т имеет самый низкий прйоритет в переговорном процессе, а дуплексный режим 100Base-TX — самый высокий.

Переговорный процесс происходит при включении питания устройства, а также может быть инициирован в любой момент модулем управления устройства. Устройство, начав­шее процесс автопереговоров, посылает своему партнеру пачку специальных импульсов FLP (Fast Link Pulse), в которой содержится 8-битное слово, кодирующее предлагаемый режим взаимодействия, начиная с самого приоритетного, поддерживаемого данным узлом. Импульсы FLP имеют длительность 100 не, как и импульсы LIT, используемые для те­стирования целостности физического соединения в стандарте IOBase-Т, однако вместо передачи одного импульса LIT через каждые 16 мс, здесь через тот же интервал передается пачка импульсов FLP.

Если узел-партнер имеет функцию автопереговоров и также способен поддерживать пред­ложенный режим, он отвечает пачкой импульсов FLP, в которой подтверждает этот режим, и на этом переговоры заканчиваются. Если же узел-партнер не может поддерживать запро­шенный режим, то он указывает в своем ответе имеющийся в его распоряжении следующий по степени приоритетности режим, и этот режим выбирается в качестве рабочего. Характеристики производительности Fast Ethernet определяются аналогично характе­ристикам версии со скоростью Ethernet 10 Мбит/с с учетом неизменного формата кадра, умножения на 10 битовой скорости (в 10 раз больше) и межкадрового интервала (в 10 раз меньше). В результате получаем:

§ максимальная скорость протокола в кадрах в секунду (для кадров минимальной длины с полем данных 46 байт) составляет 148 800;

§ полезная пропускная способность для кадров минимальной длины равна 54,8 Мбит/с;

§ полезная пропускная способность для кадров максимальной длины (поле данных 1500 байт) равна 97,6 Мбит/с.

Gigabit Ethernet

История создания

Достаточно быстро после появления на рынке продуктов Fast Ethernet сетевые интеграто­ры и администраторы при построении корпоративных сетей почувствовали определенные ограничения. Во многих случаях серверы, подключенные по 100-мегабитному каналу, перегружали магистрали сетей, также работающие на скорости 100 Мбит/с — магистрали FDDI и Fast Ethernet. Ощущалась потребность в следующем уровне иерархии скоростей.

В 1995 году более высокие скорости могли предоставить только коммутаторы ATM, кото­рые из-за высокой стоимости, а также значительных отличий от классических технологий применялись в локальных сетях достаточно редко.

Поэтому логичным выглядел следующий шаг, сделанный IEEE. Летом 1996 года было объявлено о создании группы 802.3z для разработки протокола, в максимальной степени подобного Ethernet, но с битовой скоростью 1000 Мбит/с. Как и в случае Fast Ethernet, сообщение было воспринято сторонниками Ethernet с большим энтузиазмом.

Основной причиной энтузиазма была перспектива плавного перевода сетевых магистралей на Gigabit Ethernet, подобно тому, как были переведены на Fast Ethernet перегруженные сегменты Ethernet, расположенные на нижних уровнях иерархии сети. К тому же опыт передачи данных на гигабитных скоростях уже имелся. В территориальных сетях такую скорость обеспечивала технология SDH, а в локальных — технология Fibre Channel. По­следняя используется в основном для подключения высокоскоростной периферии к круп­ным компьютерам и передает данные по волоконно-оптическому кабелю со скоростью, близкой к гигабитной. (Именно метод кодирования 8В/10В, применяемый в технологии Fiber Channel, был принят в качестве первого варианта физического уровня Gigabit Ethernet)

Стандарт 802.3z был окончательно принят в 1998 году. Работы по реализации Gigabit Ethernet на витой паре категории 5 были переданы проблемной группе 802.3ab ввиду слож­ности обеспечения гигабитной скорости на этом типе кабеля, рассчитанного на поддержку скорости 100 Мбит/с. Проблемная группа 802.3ab успешно справилась со своей задачей, и версия Gigabit Ethernet для витой пары категории 5 была принята.

Проблемы совместимости

Основная идея разработчиков стандарта Gigabit Ethernet состояла в максимальном со­хранении идей классической технологии Ethernet при достижении битовой скорости в 1000 Мбит/с.

 

В результате дебатов были приняты следующие решения:

§ сохраняются все форматы кадров Ethernet

§ по-прежнему существует полудуплексная версия протоколов, поддерживающая метод доступа CSMA/CD;

§ поддерживаются все основные виду кабелей, используемых в Ethernet и Fast Ethernet, в том числе волоконно-оптический кабель, витая пара категории 5, экранировання витая пара.

Несмотря на то что в Gigabit Ethernet не стали встраиваться новые функции, поддержание даже достаточно простых функций классического стандарта Ethernet на скорости 1 Гбит/с потребовало решения нескольких сложных задач.

§ Обеспечение приемлемого диаметра сети для работы на разделяемой среде. В связи с ограничениями, накладываемыми методом CSMA/CD на длину кабеля, версия Gigabit Ethernet для разделяемой среды допускала бы длину сегмента всего в 25 м при сохранении размера кадров и всех параметров метода CSMA/CD неизменными. Так как существует большое количество применений, требующих диаметра сети хотя бы 200 м, необходимо было каким-то образом решить эту задачу за счет минимальных изменений в технологии Fast Ethernet.

§ Достижение битовой скорости 1000 Мбит/с на оптическом кабеле. Технология Fibre Channel, физический уровень которой был взят за основу оптоволоконной версии Gigabit Ethernet, обеспечивает скорость передачи данных всего в 800 Мбит/с.

§ Использование в качестве кабеля витой пары. Такая задача на первый взгляд кажется неразрешимой — ведь даже для 100-мегабитных протоколов требуются достаточно сложные методы кодирования, чтобы уложить спектр сигнала в полосу пропускания кабеля.

Для решения этих задач разработчикам технологии Gigabit Ethernet пришлось внести из­менения не только в физический уровень, как это было в случае Fast Ethernet, но и в уро­вень MAC.



Поделиться:


Последнее изменение этой страницы: 2017-02-05; просмотров: 792; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.108.9 (0.025 с.)