Способы регуляции метаболических процессов в клетке. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Способы регуляции метаболических процессов в клетке.



Активность всех путей обмена веществ постоянно регулируется, что обеспечивает соответствие синтеза и деградации метаболитов физиологическим потребностям организма. В этом разделе рассматриваются механизмы такой регуляции.

Поток метаболитов в обмене веществ определяется прежде всего активностью ферментов Для воздействия на тот или иной путь достаточно регулировать активность фермента, катализирующего наиболее медленную стадию. Такие ферменты, называемые ключевыми ферментами, имеются в большинстве метаболических путей. Активность ключевого фермента регулируется на трех независимых уровнях:

Контроль транскрипции. Контроль за биосинтезом фермента (1) осуществляется на генетическом уровне. Прежде всего речь идет о синтезе соответствующей мРНК (mRNA), а также о транскрипции кодирующего фермент гена, т.е. о регуляции транскрипции (см. с. 120, 242). В этом процессе принимают участие регуляторные белки (RP) (факторы транскрипции), действие которых направлено непосредственно на ДНК. К тому же в генах имеются специальные регуляторные участки — промоторы — и участки связывания регуляторных белков (регуляторные элементы). На эффективность действия этих белков влияют метаболиты или гормоны. Если этот механизм усиливает синтез фермента, говорят об индукции, если же снижает или подавляет — о репрессии. Процессы индукции и репрессии осуществляются лишь в определенный отрезок времени.

Взаимопревращение. Значительно быстрее, чем контроль транскрипции, действует взаимопревращение ключевых ферментов (2). В этом случае фермент присутствует в клетке в неактивной форме. При метаболической потребности по сигналу извне и при посредничестве вторичного мессенджера активирующий фермент (E1) переводит ключевой фермент в каталитически активную форму. Если потребность в этом пути обмена веществ отпадает, инактивирующий фермент (E2) снова переводит ключевой фермент в неактивную форму. Процесс взаимопревращения в большинстве случаев состоит в АТФ-зависимом фосфорилировании ферментных белков протеинкиназой и соответственно дефосфорилировании фосфатазой. В большинстве случаев более активна фосфорилированная форма фермента, однако встречаются также и противоположные случаи.

Модуляция лигандами. Важным параметром, контролирующим протекание метаболического пути, является потребность в первом реагенте (здесь это метаболит А). Доступность метаболита А возрастает с повышением активности метаболического пути (3), в котором образуется А, и падает с повышением активности других путей (4), в которых А расходуется. Доступность А может быть ограничена в связи с его транспортом в другие отделы клетки.

Часто лимитирующим фактором является также доступность кофермента (5). Если кофермент регенерируется по второму независимому пути, этот путь может лимитировать скорость основной реакции. Таким образом, например, гликолиз и цитратный цикл регулируются доступностью НАД+. Так как НАД+ регенерируется в дыхательной цепи, последняя регулирует катаболизм глюкозы и жирных кислот.

Наконец, активность ключевого фермента может регулироваться лигандом (субстратом, конечным продуктом реакции, коферментом, другим эффектором) как аллостерическим эффектором путем связывания его не в самом активном центре, а в другом месте фермента, и вследствие этого изменением ферментативной активности. Ингибирование ключевого фермента часто вызывается конечными продуктами реакции соответствующей метаболической цепи (ингибирование по типу обратной связи) или метаболитом, участвующим в другом пути. Стимулировать активацию фермента может также первый реагент реакционной цепи.

ПЕРЕВАРИВАНИЕ УГЛЕВОДОВ.

Распад углеводов начинается в ротовой полости. В слюне содержится фермент, называемый µ-амилазой (птиалином, диастазой), расщепляющий крахмал. Расщепление идет до декстринов, а при более длительном воздействии - до мальтозы. В желудке углеводы не подвергаются перевариванию, так как там нет соответствующего фермента. Основное переваривание углеводов происходит в двенадцатиперстной кишке и в дальнейших отрезках тонких кишок под влиянием µ-амилазы, поступающей в двенадцатиперстную кишку с соком поджелудочной железы. Главным, конечным продуктом гидролиза крахмала µ-амилазой является мальтоза, которая затем расщепляется на две молекулы глюкозы под действием фермента мальтазы.

Мальтаза, а также и другие гликозидазы - сахараза и лактаза, вырабатываемые в железах слизистой оболочки тонких кишок, расщепляют дисахариды до моносахаридов. Сахараза гидролизует сахарозу на глюкозу и фруктозу, а лактаза - лактозу до глюкозы и галактозы. Клетчатка (целлюлоза) из-за отсутствия целлюлазы в животном организме не разлагается ферментами пищеварительных соков.

Из кишечника в кровь всасываются только моносахариды. Скорость всасывания у разных моносахаридов различна. Полагают, что они всасываются в виде моносфорных эфиров, что дает возможность взаимопревращению в стенке кишечника гексоз, в частности, превращению фруктозы и галактозы в глюкозу. Моносахариды с током крови по системе воротной вены попадают в печень. В печени часть глюкозы превращается в гликоген. Печень способна как синтезировать гликоген, так и расщеплять его с образованием глюкозы.

Переваривание углеводов в тонком кишечнике (полостное и пристеночное)
В двенадцатиперстной кишке кислое содержимое желу­дка нейтрализуется соком поджелудочной железы (рН 7,5—8,0 за счет бикарбонатов). С соком поджелудочной железы в кишечник поступает панкреатическая α-амилаза. Эта эндогликозидаза гидролизует внутренниеα-1,4-гликозидные связи в крахмале и декстринах с образованием мальтозы (2 ос­татка глюкозы, связанные α-1,4-гликозидной связью), изомальтозы (2 ос­татка глюкозы, связанные α-1,6-гликозидной связью) и олигосахаридов, содержащих 3—8 остатков глюкозы, свя­занных α-1,4- иα-1,6-гликозидными связями.
Переваривание мальтозы, изомальтозы и олигосахаридов происходит под дей­ствием специфических ферментов - экзогликозидаз, образующих ферментативные комплексы. Эти комплексы находятся на поверхности эпителиаль­ных клеток тонкого ки­шечника и осуществляют пристеночное пищеварение.
Сахаразо-изомальтазный комплекс состоит из 2 пептидов, имеет доменное строение. Из первого пептида образован цитоплазматический, трансмембранный (фиксирует комплекс на мембране энтероцитов) и связывающий домены и изомальтазная субъединица. Из второго - сахаразная субъединица. Сахаразная субъединица гидролизует α-1,2-гликозидные связи в сахарозе, изомальтазная субъединица - α-1,6-гликозидные связи в изомальтозе, α-1,4-гликозидные связи в мальтозе и мальтотриозе. Комплекса много в тощей кишке, меньше впроксимальнойи дистальной частях кишечника.
Гликоамилазный комплекс, содержит две каталитические субъединицы, имеющие небольшие различия в субстратной специфич­ности. Гидролизует α-1,4-гликозидные связи в олигосахаридах (с восстанавливающего конца) и в мальтозе. Наибольшая активность в нижних отделах тонкого кишеч­ника.
β-Гликозидазный комплекс (лактаза) гликопротеин, гидролизует β-1,4-гликозидные связи в лактозе. Активность лактазы зависит от возраста. У плода она особенно повышена в поздние сроки беременности и сохраняется на высоком уровне до 5-7-летнего возраста. Затем активность лактазы снижается, составляя у взрослых 10% от уровня активности, характерного для детей.
Трегалаза гликозидазный комплекс, гидролизует α-1,1-гликозидные связи между глюкозами в трегалозе — дисахариде грибов.
Переваривание углеводов заканчивается образованием моносахаридов – в основном глюкозы, меньше образуется фруктозы и галактозы, еще меньше – маннозы, ксилозы и арабинозы.
Всасывание углеводов
Моносахариды всасываются эпителиальными клетками тощей и подвздошной кишок. Транспорт моносахаридов в клетки слизистой оболочки кишечника может осуществляться путём диффузии (рибоза, ксилоза, арабиноза), облегчённой диффузии с помощью белков переносчиков (фруктоза, галактоза, глюкоза), и путем вторично-активного транспорта (галактоза, глюкоза). Вторично-активный транспорт галактозы и глюкозы из просвета кишечника в энтероцит осуществляется симпортом с Na+. Через белок-переносчик Na+ двигается по градиенту своей концентрации и переносит с собой углеводы против их градиента концентраций. Градиент концентрации Na+создаётся Nа++-АТФ-азой.



Поделиться:


Последнее изменение этой страницы: 2017-01-24; просмотров: 202; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.221.41.214 (0.004 с.)