Химическая природа полимера для изготовления скаффолда. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Химическая природа полимера для изготовления скаффолда.



Химическая структура полимеров, используемых для изготовления скаффолдов, должна обеспечивать выполнение ряда требований:

- полимеры не должны быть токсичными, вызывать реакции отторжения, иными словами, они должны обладать биологической совместимостью с тканями организма;

- скорость их деструкции должна определенным образом коррелировать со скоростью формирования интегрированной ткани;

- продукты их деструкции не должны быть токсичными, более того, желательно, чтобы эти продукты могли служить питательными веществами для клеток растущей ткани;

- химическая структура полимера должна обеспечивать максимально благоприятные для клеток характеристики поверхности скаффолда;

Этим требованиям отвечает целый ряд натуральных и синтетических биодеградируемых полимеров. Из натуральных следует выделить, прежде всего, такие полимеры как коллагены разных типов, хитозан, гиалуроновые кислоты, крахмал и ряд других полисахаридов. Коллаген по своей химической природе мог бы быть идеальным материалом для скаффолдов, так как он является белком матрикса, который живая клетка формирует при посеве ее на чужеродную поверхность. Однако физико-химические свойства коллагена не всегда сочетаются с технологическими особенностями изготовления скаффолдов. Кроме того, скорость его деструкции в организме зачастую оказывается слишком низкой для решения многих конкретных задач тканевой инженерии. Хитозан является продуктом полного или частичного деацетилирования хитина. Его физико-химические свойства определяются степенью деацетилирования, что открывает возможности «настройки» этих свойств на решение конкретных задач. В этом плане хитозан и его производные являются весьма перспективным полимером для изготовления скаффолдов.

Однако основное направление работ по созданию скаффолдов связано с синтетическими биодеструктируемыми полимерами, главным образом, полигидроксиалканоатами и родственными им материалами. Базовым полимером для большинства конструкций скаффолдов является поли(D,L-лактид) и поли(L-лактид) и сополимеры на их основе.

Эти базовые полимеры являются наиболее изученными как с позиций их синтеза, так и деструкции, а также их поведению in vivo. В большинстве развитых стран разрешено использование полилактидов для изготовления изделий медицинского назначения. Большим достоинством этих полимеров является отсутствие токсичности как самих полимеров, так и продуктов их деструкции.

Скорость деструкции поли(D,L-лактида) отвечает требованиям, предъявляемым к полимерным материалам для изготовления материалов скаффолдов. Эти материалы легко перерабатываются как формованием из расплава, так и из растворов в органических растворителях.

Широкой диапазон свойств, которые могут иметь сополимеры на основе лактида, дает основания для создания различных макромолекулярных конструкций с использованием этого мономера.

 

5.3.2. Типы полимерных скаффолдов, технологии их изготовления;

Одной из ключевых проблем в создании фрагмента ткани или органа того или иного типа является структура полимерного скаффолда – предназначенного для использования в качестве биодеградируемой матрицы для посева на нем клеток определенного типа. Как правило, это 2D- или 3D объекты, структура которых представляет собой систему взаимосвязанных пор определенных размеров и конфигурации. Это могут быть истинно пористые тела типа пен или губок, либо «квазипористые» тела, основу которых составляют тканные или прессованные нетканные материалы на основе волокон различного диаметра, полученных из биодеградируемых полимеров.

Для изготовления скаффолдов второго типа используются, среди всего прочего, такие современные технологии как многослойное нанесение расплавленного волокна с помощью специального программируемого устройства (Fusion Deposition Modelling) и другие технологии роботицированной стереолитографии.

Однако, основной интерес представляют технологии изготовления истинно пористых скаффолдов, то есть таких систем, в которых клетки связываются с полимером не на наружной поверхности волокна или диска, а на внутренней поверхности пор.

Губки (sponges) представляют собой пористые системы с высокой степенью взаимосвязанности пор друг с другом, в отличие от пен, в которых поры практически изолированы друг от друга. Для целей тканевой инженерии наиболее подходящими являются системы типа губок. Оптимальным является бимодальное распределение пор по размеру – крупные, достигающие 100 и более мкм в диаметре, и мелкие (десятки и сотни нм). На внутренней поверхности крупных пор происходит собственно присоединение клеток к поверхности полимера, их размножение (пролиферация) с последующей интеграцией в ткань. Функция системы мелких пор заключается в реализации циркуляции через них биологической жидкости, за счет чего к клеткам поступают питательные вещества, и осуществляется отвод продуктов метаболизма клеток. Важной характеристикой скаффолдов является степень пористости, то есть доля объема пор по отношению к общему объему изделия. Эта характеристика непосредственно связана с механическими характеристиками скаффолда и его способностью сохранять форму в течение времени, необходимого для формирования интегрированной ткани. В этой ситуации важно соблюсти баланс противоречивых требований механической прочности и устойчивости к внешним воздействиям с одной стороны, и минимальным содержанием структурообразующего полимера в общем объеме скаффолда – с другой. В таблице представлены основные способы производства пористых скаффолдов и связанные с ними характеристики.

Весьма важное значение имеет характер внутренней поверхности пор скаффолда, включая ее микрорельеф, свободную поверхностную энергию, заряд, возможное наличие функциональных групп, баланс гидрофобности-гидрофильности.

 

 


Таблица 2. Основные способы изготовления полимерных скаффолдов.

Способ изготовления Средний размер пор, мкм Степень пористости, % Особенности структуры
Вспенивание газами 0.1 - 1000   Открытые и закрытые изотропные поры
Фазовое разделение в системе полимер – растворитель, вызванное изменением температуры с последующим удалением растворителя (лиофильная сушка или экстракция) < 200   Открытые изотропные поры
Формирование эмульсии типа вода в масле с последующим замораживанием и лиофильным удаленинем воды < 200   Открытые изотропные поры
Создание механических смесей полимера и отфракционированных кристаллов соли с последующим вымыванием последних водой < 100   Закрытые и открытые поры, имеющие форму частиц порогена (кубическая в случае кристаллов NaCl)
Формирование системы пор по трехмерному шаблону, с последующим его удалением 45 - 150   Открытые поры любой предварительно заданной формы
Фазовое разделение двух несовместимых полимеров с последующим удалением одного из них селективным растворением или разложением 200 - 300 80-90 Открытые поры

 



Поделиться:


Последнее изменение этой страницы: 2017-01-20; просмотров: 443; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.147.103.202 (0.005 с.)