Стандарты компресcии/декомпресcии видеоизображения 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Стандарты компресcии/декомпресcии видеоизображения



Системы видеоконференций базируются на достижениях технологий средств телекоммуникаций и мультимедиа. Изображение и звук с помощью компьютера передаются по каналам связи локальных и глобальных вычислительных сетей. Ограничивающими факторами для таких систем будет пропускная способность канала связи и алгоритмы компрессии/декомпрессии цифрового изображения и звука. Предположим, мы имеем неподвижную картинку (кадр) на экране компьютера размером 300х200 пикселов с глубиной цвета всего 1 бит/пиксел. На запись такого изображения потребуется 60 Kбайт. Скорость смены кадров в телевизоре составляет 25 кадров/с, в профессиональном кинопроекторе — 24 кадра/с. Нам бы хотелось получить такую же частоту смены кадров размером 60 Kбайт каждый при сеансе связи в системе видеоконференции. Для этого наш канал связи должен обеспечить пропускную способность 1,5 Mбайт/с. Ни один современный канал связи такой пропускной способности за разумную цену не обеспечивает, поэтому возникает проблема сжатия видеосигнала. На сегодня известны два основных типа алгоритмов сжатия видеоизображения — алгоритмы сжатия без потерь и алгоритмы сжатия с потерями. Алгоритмы сжатия с потерями позволяют добиться очень высокой степени сжатия изображения, такой, что даже по низкоскоростным каналам связи можно передавать изображения с незначительной потерей качества, практически незаметной для человеческого глаза. Выполнение таких алгоритмов требует достаточно больших вычислительных мощностей. Для достижения приемлемых частот смены кадров на экране монитора требуется дорогостоящее аппаратное обеспечение, называемое кодек. Концепция настольных видеоконференций предполагает возможность доступа к телеконференциям с любого, даже домашнего, компьютера. Использование дорогостоящего оборудования CODEC идет вразрез с этой концепцией, что заставляет создателей аппаратуры систем видеоконференций прибегать к разумным компромиссам. Декомпрессия изображения требует меньшей вычислительной мощности, чем компрессия, поэтому некоторые производители используют аппаратные средства для компресcии данных, а декомпрессия осуществляется программно.

Стандарт JPEG и его производные

Стандарт JPEG (Joint Photographic Experts Group, группа экспертов по фотографическим изображениям) является стандартом ISO (International Standards Organization, Международная организация по стандартизации). Этот стандарт поддерживает компрессию как с потерями, так и без потерь. Однако если термин "формат стандарта JPEG" употребляется без каких-либо оговорок, то обычно это означает, что подразумевается компрессия с потерями. Сжатие изображения по методу JPEG предполагает преобразование блоков изображения в реальном цвете размером 8х8 пикселов в набор уровней яркости и цветности. К каждому блоку применяется двумерное дискретное преобразование Фурье, в результате чего получается набор из 64 коэффициентов, представляющих данный блок. Затем коэффициенты квантуются с помощью таблиц компонентов яркости и цветности, после чего информация о блоке упаковывается в коэффициенты, соответствующие меньшим частотам. В результате получается представление коэффициентов в двоичном виде. Этот метод обеспечивает сжатие изображения в пределах от 10:1 до 20:1 при приемлемом качестве. Основное назначение формата JPEG с потерями - получение фотографических изображений высокой степени сжатия при незначительных видимых потерях качества. Формат MJPEG, или Motion JPEG (JPEG для подвижных изображений) стандартом ISO не является.
 
 

Тем не менее, так принято называть цифровой видеосигнал, представляющий собой последовательность изображений, сжатых с потерями в стандарте JPEG.

На рис. 1 представлена организованная в удобной для понимания форме группа форматов цифрового видео, использующих алгоритм сжатия с потерями, в основе которого лежит метод JPEG. Данная модель дает хорошее представление о повышении сложности, увеличении степени сжатия и улучшении четкости изображения при переходе от формата JPEG к H.261 и далее к MPEG. Cтандарт MPEG-1 является подмножеством стандарта MPEG-2.

Стандарт Н.261 разработан организацией по стандартам телекоммуникаций ITU (Международный союз телефонной связи), которая раньше называлась CCITT (Международный консультативный комитет по телеграфии и телефонии). На практике, первый кадр в стандарте H.261 всегда представляет собой изображение стандарта JPEG, компрессированное с потерями и с высокой степенью сжатия. Последующие кадры строятся из фрагментов изображения (блоков), либо JPEG-подобных, либо фиксирующих отличия от фрагментов предыдущего кадра. Последовательные кадры видеоряда, как правило, очень похожи друг на друга. Поэтому стандарт Н.261 чаще всего используют в телеконференциях. Код, задающий перемещение части изображения, короче кода аналогичного фрагмента в стандарте MJPEG, то есть требует передачи меньшего количества данных. Поэтому при определенном значении пропускной способности линии связи изображение в формате H.261 зрительно воспринимается более качественным, чем изображение в формате MJPEG. Различия кадров всегда кодируются исходя из предыдущего кадра. Поэтому данная методика получила название "дифференциация вперед" (forward differencing). Итак, изображение в формате H.261 передается меньшим количеством данных, и, кроме того, для декодирования такого изображения требуется меньше вычислительной мощности, чем для декодирования видеопотока в формате MJPEG при аналогичном качестве.

Спецификация MPEG (Motion Picture Experts Group, Группа экспертов по подвижным изображениям) предлагает еще более изощренную, чем стандарт H.261, методику повышения качества изображения при меньшем объеме передаваемых данных, реализованную в стандартах MPEG-1 и MPEG-2. Помимо дифференциации вперед, стандарт MPEG-1 обеспечивает дифференциацию назад (backward differencing) и усреднение (averaging) фрагментов изображения. Даже на CD-ROM c одинарной скоростью передачи данных (1,2 Мбит/с) MPEG-1 позволяет добиться качества, сравнимого с качеством кассеты VHS, записанной на профессиональной аппаратуре. Кроме того, MPEG-1 нормирует кодирование аудиосигнала, синхронизированного с видеосигналом.

Стандарт MPEG-2 полностью перекрывает стандарт MPEG-1 и содержит новые, более строгие нормы, ориентированные на требования телевизионного вещания. Например, он поддерживает чересстрочную развертку, как в аналоговом телевидении. Широкое распространение стандарта MPEG-2 способно привести к цифровой революции в области видео, которую давно ожидают и которая будет сравнима с цифровой революцией в области аудио, свершившейся в последнее десятилетие.

 

Так, формат JPEG лучше всего применять для неподвижных изображений, а также для видеомонтажа, если требуется высокая точность монтажа отдельных кадров. Стандарт MPEG годится для видеопродукции, потребитель которой ждет качества изображения, сравнимого с качеством изображения на бытовой аналоговой видеокассете: компьютерных обучающих материалов, игр, кинофильмов на CD, а также видео по требованию (video on demand). Для видеоконференций на сегодняшний день чаще всего используется стандарт H.261, так как для них не требуется видеоизображения очень высокого качества.

Стандарт Cell

Компания Sun Microsystems предложила свой стандарт компрессии видеоизображения - Cell. Существуют два метода компресcии по этому стандарту: CellA и CellB. Метод CellA требует большей вычислительной мощности для компреcсии/декомпрессии сигнала, чем метод CellB. Поэтому в системах видеоконференций, требующих работы видео в реальном времени, используется метод CellB. В этом методе изображение делится на 4х4 группы пикселов, называемых ячейками (cell). В основу алгоритма компрессии положен метод BTC (Block Truncation Coding). 16 пикселов в каждой ячейке преобразуются в 16-битовую маску цветности и две 8-битовых маски интенсивности, поэтому для кодировки 384 битов требуются всего 32 бита. Это означает степень сжатия 12:1. Преимущество метода Cell заключается в том, что в процессе декомпрессии можно использовать графические примитивы Windows-подобных систем. Такие примитивы выполняются аппаратно стандартными графическими акселераторами, что позволяет пользоваться аппаратной декомпрессией, используя стандартное оборудование, уже установленное в компьютере.

Стандарт NV

Подразделение PARC компании Xerox предложило метод компресии NV (Network Video). Метод используется чаще всего в системах телеконференций, работающих в Internet. На первом шаге алгоритма текущее изображение сравнивается с предыдущим и выделяются области, в которых произошли значимые изменения. Компрессии и последующей пересылке подвергаются только эти области. В зависимости от того, что является лимитирующим фактором -- полоса пропускания канала связи или вычислительная мощность оборудования, для компрессии используются либо преобразование Фурье, либо преобразование Гаара. После квантования преобразованного изображения достигается степень сжатия до 20:1.

Стандарт CU-SeeMe

В экспериментальной системе видеоконференций CU-SeeMe, разработанной в Корнуэлльском университете, входное изображение представляется 16 градациями серого цвета с 4 битами на пиксел. Изображение разбивается на блоки пикселов общим количеством 8х8. Кадр сравнивается с предыдущим, и пересылаются только блоки, в которых произошли значимые изменения. Компрессия этих блоков происходит по алгоритму сжатия без потерь, разработанному специально для системы CU-SeeMe. С учетом возможных потерь данных в канале связи периодически пересылаются и неизменившиеся блоки. Степень сжатия изображения составляет 1,7:1. Алгоритм компрессии изначально был разработан для аппаратно-программной платформы Macintosh. Он работает с восемью 4-битными пикселами как 32-битными словами. Для системы CU-SeeMe минимальная пропускная способность канала связи должна быть не ниже 80 Кбит/с.

Стандарт Indeo

Фирма Intel разработала метод компрессии/декомпрессии Indeo. В основе метода лежит расчет изображения текущего кадра по данным предыдущего. Передача кадра происходит только в том случае, если расчетные значения значимо отличаются от реальных. Компрессия осуществляется по методу 8х8 FST (Fast Slant Transform), в котором используются только алгебраические операции сложения и вычитания. Степень сжатия в методе Indeo составляет 1,7:1.

Виды видеоконференций

Большая часть существующих на сегодняшний день систем видеоконференций - это либо аппаратные решения, либо системы, объединяющие аппаратные и программные компоненты. Их можно разбить на три основные группы:

 

1. Студийные видеоконференции - системы высшего класса, реализованные преимущественно аппаратными средствами. Они требуют высокоскоростных линий связи и четкой регламентации сеансов. Обычно такая система объединяет одного выступающего с большой аудиторией. Стоимость студийных видеоконференций составляет от 30 тыс. дол.

 

2. Групповые видеоконференции обеспечивают одновременную связь между группами участников. Применяются как аппаратные, так и программно-аппаратные решения, которые, как правило, требуют использования специального оборудования и наличия линии ISDN. Стоимость - от 5 до 30 тыс. дол.

Во время серьезных переговоров, дистанционного обучения, медицинских консилиумов в режиме удаленного доступа требуются высокое качество звука и изображения на экране. Для этих целей больше подойдут групповые видеоконференции, где используются высококачественные видеокамеры и устройства аудиосвязи, обеспечивающие HiFi-качество звука и полноэкранное видео. Соответственно, для их проведения необходимы более качественные, чем дисплей ПК, мониторы. Многие системы этого уровня включают такие мониторы в свой стандартный комплект.

Групповая видеоконференция позволяет членам разных групп видеть друг друга и обсуждать конкретные проблемы. Когда у экрана сидят несколько участников, возможности разделения данных могут оказаться не столь актуальными, как в случае диалога двух пользователей, однако ведущие системы этого уровня включают в себя подобные средства.

 

3. Персональные видеоконференции - обычно системы программно-аппаратного типа, поддерживающие диалог двух участников. Для проведения конференции необходим ПК с мультимедийными возможностями и канал связи (например, локальная сеть). Стоимость системы варьируется от 1,5 до 7 тыс. дол.

Персональные видеоконференции обеспечивают диалог двух или более (в многоточечном режиме) пользователей с помощью обычного ПК. Комплект такой системы включает в себя кодек (может быть реализован как аппаратно, так и программно), видеокамеру (монтируется на ПК), наушники и микрофоны для аудиосвязи, средства подключения к сети, ПО управления видеоконференцией и прикладные средства для поддержки совместной работы с данными. Требуется ПК с мощным процессором (486 или Pentium), достаточным объемом оперативной и внешней памяти и, как правило, операционной системой MS Windows (3.11, 95, NT).

В процессе общения пользователь имеет возможность видеть как своего собеседника, так и собственное видеоизображение. Часть экрана занимают видеоокна, а в оставшейся части могут размещаться окна приложений совместной работы с данными, которые являются неотъемлемой частью современной системы персональных видеоконференций.

Обеспечивая личное общение вкупе с возможностями сотрудничества на расстоянии, персональные видеоконференции позволяют эффективно организовывать решение текущих бизнес-задач, соединяя, например, разрабатывающих общий проект сотрудников компании, поставщика и заказчика корпоративной продукции, руководителя и работающего дома подчиненного.

 

Проводимые на Западе исследования показывают, что наиболее бурно развиваются групповые и персональные видеоконференции. Это и понятно: системы именно такого уровня предназначены для решения повседневных задач в различных областях бизнеса, медицины, науки, государственного управления и т. д.

Чтобы обеспечить видеоконференцсвязью несколько участников одновременно, как правило, необходимы специальные устройства - модули управления многоточечными конференциями (Mul-tipoint Conferencing Unit, МCU). Ряд компаний выпускает такие системы, различные по техническим характеристикам и числу поддерживаемых участников. Например, MCU II компании VTEL позволяет проводить видеоконференции более чем с 250 рабочими местами, а устройства MCU компаниb PictureTel обеспечивают связь от 4 до 48 узлов.

Обычно во время многоточечной видеоконференции вы можете видеть на экране только одного участника - того, который говорит в данный момент. Однако в некоторых системах, выпущенных в последние годы (например, MCU компании PictureTel или мультимедийном видеосервере компании Videoserver) реализовано так называемое "непрерывное присутствие" - возможность видеть на экране несколько или даже всех участников видеоконференции. Если MCU поддерживают каскадное подключение, то с помощью определенного числа таких устройств можно охватить видеоконференцсвязью сколь угодно большое число пользователей.



Поделиться:


Последнее изменение этой страницы: 2016-12-29; просмотров: 847; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.14.253.152 (0.017 с.)