Метод вычисления частных производных. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Метод вычисления частных производных.



Если бы вам нужно было вычислить производную функции, содержащей параметр C, например , то понятно, что = . Так вот, аналогично, если функция нескольких переменных, то при дифференцировании по одной из них, остальные в роли параметров, то есть вы можете мысленно «заморозить» их или даже переобозначить через A или C, а после вычисления производной, разморозить или переобозначить обратно.

Если то , .

Если объединить частные производные в один вектор, то получим .

этот вектор называется градиентом функции.

Кроме , применяется обозначение .

Если после вычисления частных производных фиксировать переменные, то есть взять конкретную точку, то получится градиент в точке. Это вектор, состоящий из чисел, а не функций.

Пример. Найти градиент функции в точке (1,1,1).

Решение. Найдём частные производные. , , . Присвоим все значения x,y,z=1. Получаем .

Пример. Пусть . Соответствующая поверхность - эллиптический параболоид. Градиент поверхности это вектор . Теперь, если фиксировать точку (1,0) то получим, что градиент равен (2,0) а если точку (1,1) то (2,2) и т.д. Градиент для этой функции всегда направлен радиально от начала координат.

И действительно, если точка находится под этой поверхностью, то она должна двигаться в направлении от центра, чтобы рост высоты поверхности над ней происходил быстрее всего. А для неявно заданной окружности, этот вектор как раз и является перпендикуляром. Заметим, что градиент ортогонален окружности, то есть горизонтальному сечению.

Старшие производные.

После дифференцрования по той или иной переменной, мы получаем снова функцию от тех же нескольких переменных. Но ведь её снова можно продифференцровать по одной или другой переменной. Таким образом, получается n2 возможностей определить какие-либо вторые производные, например, если две переменных, то вторых производных будет четыре: , , , .

Покажем их нахождение в виже схемы:

 

Кстати, смешанные вторые производные , всегда совпадают.

Также применяются и такие обозначения:

, , , .

Из 2-х производных можно образовать матрицу:

.

Здесь также можно найти 8 третьих производных, 16 четвёртых и т.д.

Кстати, часть из них может быть и 0, так, .

Это был пример с . А если , то градиент из 3 координат, тогда есть 9 вторых смешанных частных производных.

Производная функции .

Пусть дано n функций, каждая из них от n переменных:

тогда возникает n2 возможностей вычислить различные частные производные. Их можно записать в виде матрицы. В случае векторной функции векторного аргумента уже даже первые производные образуют матрицу.

.

Эта матрица и называется производной матрицей функции f.

В каждой из её строк расположен градиент какой-либо из координатных функций .

Пример. Найти производную матрицу для функции .

Решение. = = .

 

Композиция и формула полной производной

Пусть задана композиция типа , а именно .

Фактически, эта функция является функцией от t (если выразить переменные x,y через t). Следовательно, можно вычислить производную по t. Посмотрим, как эта производная взаимосвязана с частными производными. По правилу дифференцирования композиции,

=

что в других обозначениях можно записать так: .

Аналоличная формула верна и в случае 3 координат.

Производная по направлению.

В определении частных производных, мы рассматривали приращение аргумента в виде или . Но ведь от исходной точки можно отступить не только в направлении координатных осей, но и в произвольном направлении. Если рассмотреть разность значений функции в какой-то паре точек, расположенных произвольно, а не вдоль оси, то есть и затем приближать 2-ю точку к первой, и при этом делить на расстояние между точками, получим предел

называется «производная по направлению». Будем считать, что вектор нормирован, то есть . Только в этом случае мы получим правильный результат, ведь нужно измерять скорость изменения функции именно в расчёте на единицу длины при движении по этой прямой.

 

Если это направление соответствует какой-либо из координатных осей, то как раз и получаются частные производные, которые изучили раньше.

 



Поделиться:


Последнее изменение этой страницы: 2016-12-30; просмотров: 500; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.219.22.169 (0.009 с.)