Схемотехника. Стабилизаторы напряжения. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Схемотехника. Стабилизаторы напряжения.



В простейшем стабилизаторе напряжения при подключении нагрузки ток через сопротивление R делится на две части: ток через стабилитрон и ток через нагрузку (выходной ток), т.е. .

Так как , то на стабилитроне рассеивается мощность При изменении сопротивления нагрузки, а следовательно и выходного тока, изменяется. Поэтому стабилитрон должен выбираться с запасом рассеиваемой мощности, которая при малом токе нагрузки близка к максимальной: .

Рис. 4.5. Применение ЭП в стабилизаторах напряжения

Для уменьшения мощности, рассеиваемой на стабилитроне, используется ЭП. В этом случае нагрузкой стабилитрона является достаточно высокое сопротивление транзистора со стороны базы R Б и ток стабилитрона в значительно меньшей степени зависим от нагрузки, так как по цепи базы транзистора протекает относительно небольшой ток. В итоге получаем выигрыш примерно в ß раз больше по мощности, рассеиваемой на стабилитроне.

 

Из множества различных устройств вторичных источников питания ограничимся рассмотрением стабилизаторов с использованием ОУ, как наиболее соответствующим содержанию курса АЭУ.

Компенсационные стабилизаторы напряжения с ОУ позволяют достичь высокого значения коэффициента стабилизации напряжения, низкого дифференциального выходного сопротивления, повышенного КПД.

На рисунке 7.31а приведена схема высококачественного стабилизатора на ОУ.

Рисунок 7.31. Стабилизаторы напряжения на ОУ

Здесь ОУ используется в качестве буферного усилителя. Высокое значение входного сопротивления ОУ обеспечивает идеальные условия для работы стабилитрона. Нагрузка может быть достаточно низкоомной, т.к. выход ОУ низкоомный за счет действия 100% ПООСН.

Недостатком рассмотренного стабилизатора является малый рабочий ток, обусловленный низкой нагрузочной способностью ОУ. Избежать этого недостатка можно усилением выходного тока ОУ с помощью внешних транзисторов, используемых в режиме повторителей напряжения (рисунок 7.31б). Здесь к выходу ОУ подключен составной транзистор (VT1, VT2, VT3) по схеме с ОК. Максимальный ток нагрузки такого стабилизатора ориентировочно равен

Iн max = IОУ max · H 21Э1· H 21Э2· H 21Э3.

Необходимое напряжение стабилизации определяется выбором типа стабилитрона VD и, помимо этого, соответствующим выбором резисторов R1 и R2. Устройство не нуждается в емкости фильтра на выходе, т.к. здесь используется эффект умножения по отношению к нагрузке емкости конденсатора C, подключенного к базе VT3.

Другие устройства вторичных источников питания описаны в [12, 14].

Схемотехника. Гираторы.

Гиратором называется электронное устройство, преобразующее полное сопротивление реактивных элементов. Обычно это преобразователь емкости в индуктивность, т.е. эквивалент индуктивности. Широкое распространение гираторов в ИМС объясняется большими трудностями изготовления катушек индуктивностей с помощью твердотельной технологии. Использование гираторов позволяет получить относительно большую индуктивность с хорошими массогабаритными показателями.

На рисунке 7.20 приведена электрическая схема одного из вариантов гиратора, представляющего собой повторитель на ОУ, охваченный частотно-избирательной ПОС (Rос и C1).

Поскольку с увеличением частоты сигнала емкостное сопротивление конденсатора C1 уменьшается, то напряжение в точке a будет возрастать. Вместе с ним будет возрастать напряжение на выходе ОУ. Увеличенное напряжение с выхода по цепи ПОС поступает на неинвертирующий вход, что приводит к дальнейшему росту напряжения в точке a, причем тем интенсивнее, чем выше частота. Таким образом, напряжение в точке a ведет себя подобно напряжению на катушке индуктивности. Синтезированная индуктивность определяется по формуле: L = R 1 RосC 1.

Добротность гиратора определяется как:

Одной из основных проблем при создании гираторов является трудность в получении эквивалента индуктивности, у которой оба вывода не соединены с общей шиной. Такой гиратор выполняется, как минимум, на четырех ОУ. Другой проблемой является относительно узкий диапазон рабочих частот гиратора (до нескольких килогерц на ОУ широкого применения).

58. Схемотехника. Активные фильтры.

Активные фильтры – это фильтры, использующие для формирования частотной характеристики и пассивные (резисторы и конденсаторы) и активные (усилительные) элементы.

Преимущества активных фильтров:

1. Способность усиливать сигнал, лежащий в полосе их пропускания.

2. Возможность отказа от нетехнологической индуктивности, следовательно, возможность использования в интегральных схемах.

3. Легкость настройки.

4. Малые масса и объем.

5. Простота каскадного включения

Недостатки:

1. Невозможность использования в силовых цепях.

2. Необходимость доп. источника.

3. Ограниченный диапазон частот.

Виды фильтров: ФВЧ – фильтр высоких частот, усиливает начиная с какой-то частоты f0 до бесконечности. ФНЧ – фильтр низких частот, усиливает от нуля до частоты f0. Полосовой фильтр усиливает в полосе частот от f0 до f1. Режекторный усиливает от нуля до частоты f0 и начиная с f1 до бесконечности.

В качестве простейшего фильтра низких частот можно использовать дифференциатор, а высоких частот – интегратор.

Полосовой фильтр можно получить последовательно соединением ФВЧ и ФНЧ

Режекторный – параллельным соединением ФНЧ и ФВЧ

Схемотехника. Генераторы.

Генератором называется автоколебательная структура, в которой энергия источника питания преобразуется в энергию электрических автоколебаний. Различают генераторы синусоидальных (гармонических) колебаний и генераторы сигналов специальной формы (прямоугольной, треугольной и т.д.)

Обобщенная макромодель генератора приведена на рисунке 7.28 и представляет собой усилительный каскад, охваченный цепью ПОС.

Для возникновения колебаний в данной системе необходимо выполнение условия баланса амплитуд и баланса фаз

Для получения на выходе генератора синусоидального напряжения достаточно, чтобы данные условия выполнялись только на одной частоте.

Существует большое количество схемных реализаций генераторов, поэтому ограничимся рассмотрением генераторов на основе ОУ, как наиболее соответствующим содержанию курса АЭУ. На рисунке 7.29 приведены различные варианты схем генераторов гармонических колебаний на ОУ.

В схеме LC-автогенератора (рисунок 7.29а) баланс фаз обеспечивается наличием ПОС, вводимой с помощью резисторов R2 и R3, баланс амплитуд достигается выбором номиналов резисторов R2 и R3 по условию K = R 3(R 2 + R 3K? 1.

Здесь под K подразумевается масштабный коэффициент усиления, равный K = R? / R 1, где R? — сопротивление контура на частоте резонанса. Частота резонанса определяется элементами LC-контура и рассчитывается по известной формуле

Можно избежать применения индуктивностей, используя селективные RC-цепи. Наибольшее применение получила так называемая фазирующая RC-цепь, включенная в схеме RC-генератора (рисунок 7.29б) между выходом и неинвертирующим входом ОУ. На частоте генерации f 0 = 1/2? RC фазовый сдвиг ?ос =0 и выполняется условие баланса фаз, для выполнения баланса амплитуд необходимо скомпенсировать затухание, вносимое фазирующей цепью на частоте генерации, т.е. выполнить условие K 0 ОС = R 2/(R 1 + R 2) = A 0, где A 0?3,3 — затухание, вносимое фазирующей цепью.

Чтобы генерировать колебания сложной формы, следует выполнить неравенство K 0 ОС >> A 0 как условие генерации многочастотных колебаний. Оно легко реализуется.

В схеме RC-автогенератора с электронной перестройкой частоты (рисунок 7.29г) в качестве управляемых сопротивлений используется сдвоенный ПТ, у которого сопротивление канала является линейной функцией управляющего напряжения Eупр. Очевидно, что при изменении Eупр происходит электронная перестройка частоты. Если в качестве управляющего напряжения использовать низкочастотное колебание, то по закону изменения амплитуды этого колебания будет изменяться частота автогенератора, т.е. осуществляться частотная модуляция.

Важным параметром автогенераторов является температурная нестабильность частоты, которая в обычных LC-генераторах достигает порядка (10-3…10-4)% на 1°C, в RC-генераторах — примерно на порядок ниже. Гораздо лучшие показатели стабильности частоты обеспечивают кварцевые автогенераторы (рисунок 7.29в). Здесь кварц используется в качестве эквивалентной индуктивности, образующей с емкостью С последовательный колебательный контур, имеющий на частоте резонанса минимальное сопротивление. На частоте резонанса ПОС достигает максимума, и возникает генерация. Для стабилизации режима ОУ охвачен глубокой ООС по постоянному напряжению, которая, в целях выполнения условия баланса амплитуд, устраняется на частоте генерации конденсатором C1, емкость которого выбирается из условия XC 1 = 1/2? f 0 C << R.

В термостатированных кварцевых генераторах достигается нестабильность частоты порядка 10-8% на 1°C.

Для стабилизации амплитуды генерируемых колебаний в цепях ООС генераторов используют нелинейные элементы, например, диоды (рисунок 7.29 д), либо АРУ, например, на ПТ (рисунок 7.29е).

Принцип построения генераторов прямоугольных колебаний рассмотрим на примере симметричного мультивибратора на ОУ (рисунок 7.30).

Рисунок 7.30. Симметричный мультивибратор на ОУ

Режим генерации здесь обеспечивается путем подключения к инвертирующему входу ОУ времязадающей цепи ООС (RООС и C1). Предположим, что в начальный момент времени на инвертирующем входе ОУ присутствует большее положительное напряжение, чем на неинвертирующем. Тогда на выходе ОУ появится отрицательное напряжение Uвых, которое, благодаря цепи ПОС (RПОС и R1), имеет нарастающий характер. Этим отрицательным Uвых теперь будет заряжаться C1 через RООС. Процесс заряда C1 будет продолжаться до тех пор, пока напряжение на инвертирующем входе ОУ станет более отрицательным, чем на ее неинвертирующем входе. Теперь на выходе ОУ появляется положительное Uвых, форсированно нарастающее под действием ПОС. Таким образом, на выходе ОУ будет формироваться последовательность симметричных двуполярных прямоугольных импульсов типа "меандр". Времена длительности импульса и паузы в таком мультивибраторе равны t = RООСC 1ln(1 + 2 RПОС / R 1).



Поделиться:


Последнее изменение этой страницы: 2016-12-30; просмотров: 587; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.137.161.222 (0.015 с.)