Устройство и функционирование аэс. Технологические схемы производства электроэнергии на аэс. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Устройство и функционирование аэс. Технологические схемы производства электроэнергии на аэс.



АЭС — это по существу тепловые электростанции, которые используют тепловую энергию ядерных реакций.

Возможность использования ядерного топлива, в основном 235 U в качестве источника теплоты связана с образованием цепной реакции деления вещества и выделением при этом огромного количества энергии. Самоподдерживающаяся и регулируемая цепная реакция деления ядер урана обеспечивается в ядерном реакторе. Ввиду эффективности деления ядер урана 235U при «бомбардировке» их медленными тепловыми нейтронами пока преобладают реакторы на медленных тепловых нейтронах. В качестве ядерного горючего используют обычно изотоп урана 235U, содержание которого в природном уране составляет 0,714%; основная масса урана — изотоп 238U (99,28%). Ядерное топливо используют обычно в твердом виде. Его заключают в предохранительную оболочку. Такого рода тепловыделяющие элементы называют ТВЭ-лами, их устанавливают в рабочих каналах активной зоны реактора. Тепловая энергия, выделяющаяся при реакции деления, отводится из активной зоны реактора с помощью теплоносителя, который прокачивают под давлением через каждый рабочий канал или через всю активную зону. Наиболее распространенным теплоносителем является вода, которую подвергают тщательной очистке.

Реакторы с водяным теплоносителем могут работать в водном или паровом режиме. Во втором случае пар получается непосредственно в активной зоне реактора.

При делении ядер урана или плутония образуются быстрые нейтроны, энергия которых велика. В природном или слабообогащенном уране, где содержание 235U невелико, цепная реакция на быстрых нейтронах не развивается. Поэтому быстрые нейтроны замедляют до тепловых (медленных) нейтронов. В качестве замедлителей используют вещества, которые содержат элементы с малой атомной массой, обладающие низкой поглощающей способностью по отношению к нейтронам. Основными замедлителями являются вода, тяжелая вода, графит.

В настоящее время наиболее освоены реакторы на тепловых нейтронах. Такие реакторы конструктивно проще и легче управляемы по сравнению с реакторами на быстрых нейтронах. Однако перспективным направлением является использование реакторов на быстрых нейтронах с расширенным воспроизводством ядерного горючего — плутония; таким образом может быть использована большая часть 238U.

На атомных станциях России используют ядерные реакторы следующих основных типов:

РБМК (реактор большой мощности, канальный) — реактор на тепловых нейтронах, водографитовый;

ВВЭР (водо - водяной энергетический реактор) — реактор на тепловых нейтронах, корпусного типа;

БН (быстрые нейтроны) — реактор на быстрых нейтронах с жидкометаллическим натриевым теплоносителем.

Единичная мощность ядерных энергоблоков достигает 1500 МВт.

АЭС работают главным образом в базовой части графика нагрузки энергосистемы с продолжительностью использования установленной мощности 6500—7000 ч/год.

Технологическая схема АЭС зависит от типа реактора, вида теплоносителя и замедлителя, а также от ряда других факторов. Схема может быть одноконтурной, двухконтурной и трехконтурной.

На рис. 4.19 в качестве примера представлена двухконтурная схема АЭС для электростанций с реакторами ВВЭР. Видно, что эта схема близка к схеме КЭС, однако вместо парогенератора на органическом топливе здесь используется ядерная установка.

Рис. 4.19. 1— реактор; 2— парогенератор; 3— турбина; 4— генератор; 5— трансформатор; 6 — конденсатор турбины; 7 —конденсационный (питательный) насос; 8— главный циркуляционный насос

АЭС, так же как и КЭС, строятся по блочному принципу как тепломеханической, так и в электрической части. Ядерное топливо обладает очень высокой теплотворной способностью (1кг 235U заменяет 2900 т угля), поэтому АЭС особенно эффективны в районах, бедных топливными ресурсами, например в европейской части России.

АЭС выгодно оснащать энергоблоками большой мощности. Тогда по своим технико-экономическим показателям они не уступают КЭС, а в ряде случаев и превосходят их. В настоящее время разработаны реакторы электрической мощностью 440 и 1000 МВт типа ВВЭР, а также 1000 и 1500 МВт типа РБМК. При этом энергоблоки формируются следующим образом: реактор сочетается с Двумя турбоагрегатами (реактор ВВЭР-440 и два турбоагрегата по 220 МВт, реактор ВВЭР-1000 и два турбоагрегата по 500 МВт, реактор РБМК-1500 и два турбоагрегата по 750 МВт) или с турбоагрегатом одинаковой мощности (реактор 1000 МВт и турбоагрегат 1000 МВт единичной мощности).

Перспективными являются АЗС с реакторами на быстрых нейтронах (БН), которые могут использоваться для получения тепла и электроэнергии, а также и для воспроизводства ядерного горючего. Технологическая схема энергоблока такой АЭС представлена на рис. 4.20. Реактор типа БН имеет активную зону, где происходит ядерная реакция с выделением потока быстрых нейтронов. Эти нейтроны воздействуют на элементы из 238U, который обычно в ядерных реакциях не используется, и превращают его в плутоний 239Рu, который может быть впоследствии использован на АЭС в качестве ядерного горючего. Тепло ядерной реакции отводится жидким натрием и используется для выработки электроэнергии.

Рис. 4.20. а — принцип выполнения активной зоны реактора; б— технологическая схема: 1—7— аналогичны указанным на рис. 4.19; 8— теплообменник натриевых контуров; 9— насос нерадиоактивного натрия; 10— насос радиоактивного натрия

Схема АЭС с реактором БН трехконтурная, в двух из них используется жидкий натрий (в контуре реактора и промежуточном). Жидкий натрий бурно реагирует с водой и водяным паром. Поэтому, чтобы избежать при авариях контакта радиоактивного натрия первого контура с водой или водяным паром, выполняют второй (промежуточный) контур, теплоносителем в котором является нерадиоакгивный натрий. Рабочим телом третьего контура является вода и водяной пар.

АЭС не имеют выбросов дымовых газов и не имеют отходов в виде золы и шлаков. Однако удельные тепловыделения в охлаждающую воду у АЭС больше, чем у ТЭС, вследствие большего удельного расхода пара, а следовательно, и больших удельных расходов охлаждающей воды. Поэтому на большинстве новых АЭС предусматривается установка градирен, в которых теплота от охлаждающей воды отводится в атмосферу.

Важной особенностью возможного воздействия АЭС на окружающую среду является необходимость захоронения радиоактивных отходов. Это делается в специальных могильниках, которые исключают возможность воздействия радиации на людей.

Чтобы избежать влияния возможных радиоактивных выбросов АЭС на людей при авариях, применены специальные меры по повышению надежности оборудования (дублирование систем безопасности и др.), а вокруг станции создается санитарно-защитная зона.



Поделиться:


Последнее изменение этой страницы: 2016-12-30; просмотров: 497; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.16.66.206 (0.019 с.)