Тема 11. Электронно-лучевой и лазерный нагрев 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Тема 11. Электронно-лучевой и лазерный нагрев



Рассматриваемые вопросы:

- особенности и область применения;

- электронно- лучевой нагрев;

- лазерный и ионный нагрев;

- конструкция установок.

 

Рекомендуемая литература:

- Басов А.М. и др. Электротехнология. Учебное пособие. – М.: Агропромиздат, 1985.

- Карасенко В.А. и др. Электротехнология. – М.: Колос, 1992.

- Кудрявцев И.Ф., Карасенко В.А. Электрический нагрев и электротехнология. Учебное пособие.- М.: Колос, 1976.

- Электронагревательные установки в сельскохозяйственном производстве. /Под общ. ред. В.Н. Растригина/. – М.: Агропромиздат, 1985.

- Глушков А.М., Юдаев И.В. Светотехнтка и электротехнология. ч. 2 «Электротехнология» ФГОУ ВПО «Волгоградская ГСХА». – Волгоград, 2008, (текст).

 

 

Краткое содержание

Электронно-лучевой нагрев выполняют лучом (пучком) электронов, эмитируемых нагретым катодом, в глубоком вакууме. Устройство, формирующее электронный луч для технологического использования, называют электронной пушкой. Электроны, эмитируемые нагретым катодом пушки, ускоряются и фокусируются электрическим полем. На электрон в электрическом поле действует сила F=е ·Е, под действием которой он ускоряется и приобретает энергию:

 

где me, v и е - масса, скорость и заряд электрона; U - ускоряющее напряжение.

Разогнанный в электрическом поле поток электронов направляется на нагреваемый материал, при встрече с которым электроны тормозятся и

их кинетическая энергия преобразуется в теплоту. Чтобы энергия электронов не рассеивалась на молекулах газа, электронный луч создают в вакууме при давлении 10-2...10-3 Па. В зависимости от технологического назначения электронно-лучевых установок ускоряющее напряжение U изменяется от 15...20 до 100...200 кВ. Наиболее распространены электронно-лучевые установки с напряжением равным 20...30 кВ.

При напряжениях больше 20 кВ торможение электронов на металлической поверхности сопровождается не только нагревом, но и рентгеновским излучением (наподобие излучения рентгеновских трубок), что требует специальных мер защиты обслуживающего персонала.

Мощность выделяемая электронным пучком в месте встречи с материалом, Р= U·I·η (где I – сила тока пучка; η – КПД). Величина мощности может иметь значение от десятков до тысяч кВт в единице объема. Площадь же сечения луча на поверхности тела 10-3…10-5 мм2.

Основные технологические особенности электронно-лучевого нагрева заключаются в следующем: высокая концентрация мощности; нагрев материалов в вакууме, обеспечивающий высокое качество сварки и других процессов (что особенно важно для химически активных материалов); возможность плавного регулирования мощности; малоразмерная зона воздействия луча на материал (что позволяет выполнять тонкие термические операции на микродеталях).

К недостаткам электронно-лучевого нагрева относят: необходимость использования высокого вакуума; повышенная опасность при обслуживании из-за рентгеновского излучения; высокая стоимость и сложность эксплуатации оборудования. Поэтому его применяют там, где выполнить операции иными способами невозможно или должного эффекта не получается: сварка и термообработка деталей из молибдена, вольфрама, ниобия и других тугоплавких и химически активных металлов, микросварка радиодеталей, микросхем и т. п., размерная обработка деталей, нанесение покрытий.

Лазеры или оптические квантовые генераторы – источники оптического излучения, отличающегося высокой когерентностью, узкой направленностью, большой концентрацией мощности, высокой степенью монохроматичности, способностью к фокусированию.

Лазерное излучение является индуцированным. Его испускают возбужденные внешним источником энергии (системой накачки) атомы или молекулы оптически активных веществ, электроны которых при возбуждении переходят на более высокие энергетические уровни, а затем, возвращаясь в первоначальное состояние, отдают приобретенную энергию в виде лавины квантов, тождественных по направлению, частоте, фазе и поляризации фотонам возбуждающей энергии.

Энергия перехода электрона с верхнего на нижний энергетический уровень определяется законом Планка:

 

где Е2 - Е1 – энергия уровней, между которыми происходит переход; h = 6,62·10-34 Дж·с - постоянная Планка; v - частота переходов, с- 1.

Энергия излучения, которую имеет единица объема активного вещества концентрацией частиц N0, м-3, зависит от степени инверсии активного вещества - количества N возбужденных атомов, электроны которых могут находиться на верхнем энергетическом уровне. Инверсное состояние можно описать формулой, определяющей распределение атомов по энергетическим уровням:

где E - энергия верхнего уровня; k = 1,38 ·10-23 Дж·К-1 - постоянная Больцмана.

Если считать температуру Т вещества отрицательной, ибо с понижением температуры генерация возникает при меньшей энергии накачки. Инверсное состояние называют также "состоянием с отрицательной температурой". Энергия излучения, которую потенциально имеет единица объема активного вещества, Дж·м-3:

Особенности лазерного нагрева: наивысшая плотность мощности, известная на Земле, возможность передавать энергию лазера на расстояние и осуществлять, таким образом, бесконтактный нагрев тел; плавность регулирования интенсивности лазерного излучения и др.

Технологические особенности и свойства лазерного нагрева во многом совпадают со свойствами электронно-лучевого нагрева, схожи и области их применения. Однако лазерный нагрев имеет свои преимущества: он осуществляется на воздухе и не сопровождается рентгеновским излучением, стоимость установок лазерного нагрева меньше и они проще в обслуживании. Механизм воздействия лазерного излучения в зависимости от параметров может быть тепловым и химическим, связанным с разрывом старых и установлением новых химических связей, так как кванты энергии оптического диапазона, соизмеримы с энергией некоторых химических связей в молекулах вещества. Это свойство лазерных лучей особенно важно при использовании в селекционной работе для индуцированного мутагенеза семян с целью получения растений с комплексом хозяйственно ценных свойств, в процессе предпосевной обработки семян, дефектоскопии и прединкубационной обработки яиц, в ветеринарии.

Отмеченными особенностями объясняется более широкое распространение лазерного нагрева по сравнению с электронным. Технологические лазерные установки (ТЛУ) применяют в машиностроении и на ремонтных предприятиях для пайки, сварки, сверления, резки металлов, нанесения покрытий, поверхностной закалки стальных деталей, оплавления и прошивки отверстий в керамических изделиях, в голографии, для резки и раскроя неметаллических материалов, в научных исследованиях.

Лазер состоит из трех основных узлов: излучателя (рабочее тело), системы накачки, оптического резонатора.

Излучатель - оптически активное вещество (тело), предназначенное для преобразования энергии накачки в лазерное излучение. Активное вещество может быть твердым диэлектриком, полупроводником, жидкостью, газом. Соответственно различают твердотельные, полупроводниковые, жидкостные и газовые лазеры. Наиболее распространены твердотельные и газовые лазеры.

Система накачки предназначена для возбуждения атомов активных веществ. Накачка может выполняться электрическими разрядами (газовые лазеры), оптическим излучением с помощью специальных ламп (твердотельные и жидкостные лазеры) и другим путем.

Оптический резонатор включает систему отражательных, преломляющих, фокусирующих и других оптических элементов, служащих для взаимодействия излучения с рабочим веществом.

Для технологических целей используют газовые лазеры на аргоне, ксеноне, углекислом газе и твердотельные лазеры на неодимовых стеклах. Наибольшую мощность (до 5 кВт, а опытные образцы - до 20 кВт) имеют лазеры на углекислом газе с примесью азота и гелия (СО2-лазеры).

Лазеры работают в непрерывном и импульсном режимах. Первый характеризуется мощностью луча, второй - мощностью, длительностью, энергией импульса и частотой их повторения. СО2- лазер в непрерывном режиме имеет мощность 10...102 Вт, в импульсном – 106...109 Вт, длительность импульсов 1...10 мкс, частота 25...100 Гц, КПД 8...30 %. Наиболее высоким КПД (50...60 %) отличаются полупроводниковые лазеры, работающие преимущественно в импульсном режиме.

Ионный нагрев металлических тел осуществляют потоком положтельных ионов низкотемпературной плазмы, создаваемой в вакууме тлещим электрическим разрядом.

Нагреваемое тело помещают в металлическую вакуумированную (давление порядка 10-3 Па) камеру и подводят к нему отрицательный полюс источника питания постоянного тока, а к стенкам камеры - положительный полюс. В камеру подают рабочие летучие вещества: газ (аммиак, бор и др.), твердые летучие вещества, пары металлов (их получают в той же камере электродуговым испарением). Между изделием и стенками камеры возбуждают тлеющий электрический разряд. Катод - изделие нагревается потоком положительных ионов летучих присадочных веществ, извлекаемых из низкотемпературной плазмы. Ионы, устремляющиеся к изделию, не только нагревают его, отдавая запасенную в электрическом поле энергию, но и вступают с поверхностью изделия в сложные взаимодействия, поэтому ионный нагрев используют в процессах химико-термической обработки металлов, таким как:

– диффузное поверхностное упрочнение (азотирование, цементация, борирование и др.) металлических изделий (инструмента, шестерен, гильз двигателей внутреннего сгорания, коленчатых валов и др.) путем насыщения легирующими элементами слоев изделий при диффузном взаимодействии ионов с изделием, сопровождаемым нагревом. Процесс протекает при скорости диффузии ионов в металл, превышающей скорость осаждения ионов;

– поверхностное покрытие изделий путем ионно-плазменного напыления нитридов (молибдена, титана и др.), карбидов, карбонитридов и других веществ. Процесс протекает при скорости конденсации ионов, превышающей скорость их диффузного взаимодействия с подложкой.

Преимущества ионно-плазменной обработки по сравнению с химикотермической обработкой в плазменных печах состоят в повышении производительности в 8...10 раз, уменьшении деформации и повышении износостойкости деталей в 1,5...3 раза, режущего инструмента в 2...10 раз, существенного снижения энергозатрат.

Установки ионного нагрева выпускают на мощности в десятки и сотни киловатт. Для возбуждения плазмы используют источники постоянного тока с выходным напряжением от десятков вольт до 1,5 кВ.

Установки электронно-лучевого, лазерного и ионного нагрева питаются от источников постоянного тока (напряжения). Общий элемент источников питания (ИП) - преобразователь переменного тока в постоянный. Различаются установки мощностью и выходным напряжением (десятки и сотни вольт в установках ионного нагрева, единицы киловольт в установках лазерного нагрева, десятки киловольт в установках электронно-лучевого нагрева).

Основные требования к источникам питания: возможность регулирования мощности; устойчивость к коммутационным перенапряжениям; обеспечение управления по заданному режиму или программе.

Структурная схема ИП включает в общем случае следующие блоки: преобразования напряжения сети в необходимое напряжение установки (повышающий трансформатор);

преобразования переменного тока в постоянный (неуправляемый или управляемый выпрямитель, фильтры, устройства стабилизации и защиты);

собственных нужд (системы накачки, поджига, фокусирования и др.); управления, регулирования, контроля.

При общих принципах структуры источники питания установок каждого вида имеют особенности, обусловленные видом вольтамперных характеристик, спецификой работы, технологическими и другими требованиями.

 



Поделиться:


Последнее изменение этой страницы: 2016-12-30; просмотров: 1454; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.136.154.103 (0.011 с.)