Требуемый уровень квалификации персонала. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Требуемый уровень квалификации персонала.



ПЛК спроектирован таким образом, что никакие действия персонала в пределах разумного не могут вывести его из строя. Поэтому квалификация персонала влияет только на быстроту освоения работы с ПЛК, но не на его надѐжность и работоспособность.

ПЛК не имеет цепей, находящихся под опасным для жизни напряжением, если он не подсоединѐн к внешним цепям с высоким напряжением.

Управлять ПК можно с помощью IBM PC/AT или совместимым компьютером при помощи соединения их через адаптер RS-232. Схема такого соединения представлена на рисунке 20. На рисунке 20 так же помечены входы и выходы для датчиков, необходимых для совершения технологической операции.

 

Рис. 20. Схема подключения ПК с компьютеру

Qi, Xi – входной сигнал i-го датчика,

Vi – выходной сигнал

Выбор датчиков для реализации автоматического управления электроприводом транспортной тележки.

Выбор датчика положения.

Наиболее распространены бесконтактные датчики положения следующих типов: индуктивные, генераторные, магнитогерконовые и фотоэлектронные. Указанные датчики не имеют механического контакта с подвижным объектом, положение которого контролируется.

Бесконтактные датчики положения обеспечивают высокое быстродействие и большую частоту включений механизма. Определенным недостатком этих датчиков является зависимость их точности от изменения напряжения питания и температуры. В зависимости от требований, выходным аппаратом этих устройств может быть как бесконтактны логический элемент, так и электрическое реле.

В схемах точной остановки электроприводов, бесконтактные датчики могут использоваться как для подачи команды на переход к пониженной частоте вращения, так и для окончательной остановки.

Индуктивные датчики положения ИКВ-22

 

Индуктивные датчики ИКВ-22. Работа этих датчиков основана на принципе изменения индуктивного сопротивления катушек со стальным сердечником при изменении воздушного зазора в магнитной цепи.

На стальной плите 1 установлен магнитопровод 2 с двумя катушками 3, закрытый пластмассовой крышкой 4. С нижней стороны к плите крепятся два конденсатора 5 типа МБГП (один емкостью 15 мкФ, 200 В, второй —10 мкФ, 400 В). Конденсаторы закрыты крышкой 6. Подключение кабеля производится через сальниковый ввод 7. На механизме устанавливается магнитный шунт 8, размеры которого должны быть не менее: толщина 2 мм, ширина 80 мм, длина 140 мм. Воздушный зазор между магнитопроводом и шунтом равен 6±4 мм.

 

Рис. 21. Схема включения индуктивного датчика ИД и выходного реле

Выходное реле нормально включено и отключается в момент прохождений магнитного шунта над датчиком, когда из-за изменения индуктивного сопротивления катушки наступает резонанс токов и ток через обмотку реле падает. Данные реле Р: тип МКУ-48, 12 В переменного тока, ток втягивания не более 0,45 А, ток отпадания не менее 0,1 А. Напряжение питания цепи датчик — реле 24 В переменного тока.

Выбор магнитного пускателя.

Магнитные пускатели предназначены, главным образом, для дистанционного управления трехфазными асинхронными электродвигателями с короткозамкнутым ротором, а именно:

- для пуска непосредственным подключением к сети и остановки (отключения) электродвигателя (нереверсивные пускатели),

 

- для пуска, остановки и реверса электродвигателя (реверсивные пускатели). Кроме этого, пускатели в исполнении с тепловым реле осуществляют также защиту управляемых электродвигателей от перегрузок недопустимой продолжительности.

Магнитные пускатели открытого исполнения предназначены для установки на панелях, в закрытых шкафах и других местах, защищенных от попадания пыли и посторонних предметов.

Магнитные пускатели защищенного исполнения предназначены для установки внутри помещений, в которых окружающая среда не содержит значительного количества пыли.

Магнитные пускатели пылебрызгонепроницаемого исполнения предназначены как для внутренних, так и для наружных установок в местах, защищенных от солнечных лучей и от дождя (под навесом).

Для реализации автоматического управления транспортной тележкой, выбираем магнитный пускатель серии ПМЛ, изображенный на рисунке 22.

Магнитные пускатели имеют магнитную систему, состоящую из якоря и сердечника и заключенную в пластмассовый корпус. На сердечнике помещена втягивающая катушка. По направляющим верхней части пускателя скользит траверса, на которой собраны якорь магнитной системы и мостики главных и блокировочных контактов с пружинами.

Принцип работы пускателя прост: при подаче напряжения на катушку якорь притягивается к сердечнику, нормально-открытые контакты замыкаются, нормально-закрытые размыкаются. При отключении пускателя происходит обратная картина: под действием возвратных пружин подвижные части возвращаются в исходное положение, при этом главные контакты и нормально-открытые блокконтакты размыкаются, нормально-закрытые блокконтакты замыкаются.

Реверсивные магнитные пускатели представляют собой два обычных пускателя, укрепленных на общей основании (панели) и имеющем электрические соединения, обеспечивающие электрическую блокировку через нормально-замкнутые блокировочные контакты обоих пускателей, которая предотвращает включение одного магнитного пускателя при включенном другом.

Самые распространенные схемы включения нереверсивного и реверсивного магнитного пускателя смотрите здесь: Схемы включения магнитным пускателем асинхронного электродвигателя. В этих схемах предусмотрена нулевая защита с помощью нормально-открытого контакта пускателя, предотвращающая самопроизвольное включение пускателя при внезапном появлении напряжения.

Реверсивные пускатели могут также иметь механическую блокировку, которая располагается под основание (панелью) пускателя и также служит для предотвращения одновременного включения двух магнитных пускателей. При электрической блокировке через нормально-замкнутые контакты самого пускателя (что предусмотрено его внутренними соединениями) реверсивные пускатели надежно работают и без механической блокировки.

Рис. 22. Реверсивный магнитный пускатель

Реверс электродвигателя при помощи реверсивного пускателя осуществляется через предварительную остановку, т.е. по схеме: отключение вращающегося двигателя - полная остановка - включение на обратное вращения. В этом случает пускатель может управлять электродвигателем соответствующей мощности.

В случае применения реверсирования или торможения электродвигателя противовключением его мощность должна быть выбрана ниже в 1,5 - 2 раза максимальной коммутационной мощности пускателя, что определяется состоянием контактов, т.е. их износоустойчивостью, при работе в применяемом режиме. В этом режиме пускатель должен работать без механической блокировки. При этом электрическая блокировка через нормально-замкнутые контакты магнитного пускателя обязательна.

Магнитные пускатели защищенного и пылебрызгонепроницаемого исполнений имеют оболочку. Оболочка пускателя пылебрызгонепроницаемого исполнения имеет специальные резиновые уплотнения для предотвращения попадания внутрь пускателя пыли и водяных брызг. Входные отверстия в оболочку закрыты специальными пробами с применением уплотнений.

Выбор счетчика оборотов.

Для определения точной остановки транспортной тележки, в качестве счетчика оборотов выберем пошаговый энкодер, изображенный на рисунке 23.

Импульсный (пошаговый) энкодер относится к типу энкодеров, которые предназначены для указания направления движения и/или углового перемещения внешнего механизма.

Рис. 23. Пошаговый энкодер

Пошаговый энкодер периодически формирует импульсы, соответствующие углу вращения вала. Этот тип энкодеров, в отличие от абсолютных, не формирует выходные импульсы, когда его вал находится в покое. Пошаговый энкодер связан со счетным устройством, это необходимо для подсчета импульсов и преобразования их в меру перемещения вала.

Пошаговый оптический энкодер состоит из следующих компонентов: источника света, диска с метками, фототранзисторной сборки и схемы обработки сигнала. Диск пошагового энкодера подразделен на точно позиционированные отметки. Количество отметок определяет количество импульсов за один оборот. К примеру, если диск поделен на 1000 меток, тогда за 250 импульсов вал должен повернуться на 90 градусов.

Пошаговый энкодер может быть классифицирован в однофазный тип (только канал выход), который может быть использован, чтобы считать сумму импульсов или определять ускорение. Рассматривая интервал между импульсами и квадратурой энкодера (каналов A и выход B), можно также определить направление вращения вала (по-, или против часовой стрелки). Тип энкодера с нулевым индексом выхода (канал N) выдает импульс нулевой отметки за один оборот, чтобы корректировать ошибки в пределах каждого оборота. Более высокое разрешение (в два или в четыре) получается подсчетом как переднего, так и заднего края меток. Канал A и B генерирует импульсы с фазами, смещенными относительно друг друга на 90 градусов.


 



Поделиться:


Последнее изменение этой страницы: 2016-12-30; просмотров: 122; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.226.187.24 (0.009 с.)