Инфразвук – звуковые колебания и волны с частотами, ниже полосы слышимых человеческим ухом звуковых (акустических частот). 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Инфразвук – звуковые колебания и волны с частотами, ниже полосы слышимых человеческим ухом звуковых (акустических частот).



Источники инфразвука могут быть как природные явления и процессы (естественные источники), так и искусственные (техногенные), возникающие в результате производственно – технической и научной деятельности людей.

Природные низкочастотные колебания широко представлены в окружающей среде (землетрясения, извержения вулканов, грозовые разряды, штормы, ветры). Однако все эти источники локализованы в пространстве и времени, не оказывая глобального влияния на жизнь людей и образуют природный инфразвуковой фон.

В настоящее время наблюдается увеличение инфразвукового фона в окружающей среде в связи с развитием промышленного производства и транспорта. К основным техногенным источникам инфразвуковых колебаний относятся:

  1. Производственный инфразвук, генерируемый различным оборудованием, расположенным на промплощадках предприятий. Наиболее характерными источниками производственного инфразвука являются металлургические предприятия, для которых зафиксирован инфразвук с частотами 8-16 Гц и уровнем 97-107 дБ.
  2. Наземные транспортные средства. Высокие уровни инфразвука до 100 -120 дБ в диапазоне 2-16 Гц фиксируются на транспортных магистралях.

Инфразвук относится к наименее изученным вредным и опасным факторам загрязнения окружающей среды. Характерной особенностью инфразвука является большая длина волны и малая частота колебаний, что позволяет инфразвуковым волнам распространяться в воздушной среде на большие расстояния с небольшой потерей энергии.

В настоящее время накоплены данные, свидетельствующие о том, что инфразвук оказывает выраженное неблагоприятное воздействие на человеческий организм, особенно на психоэмоциональную сферу, влияют на работоспособность, сердечно-сосудистую и эндокринную систему. Люди, проживающие в крупных городах, попадают под постоянное воздействие низкочастотных колебаний различных уровней, результатом которого является накапливаемое возбуждение и раздражительность, происходит формирование психологического типа «человека большого города».

Санитарно-гигиеническое нормирование воздействия инфразвука на организм человека производится в соответствии с нормативным документом СанПиН 2.2.4./2.1.8.583-96 «Инфразвук на рабочих местах, в жилых и общественных помещениях и на территории жилой застройки» [8].

Нормируемыми показателями для инфразвука являются:

· уровни звукового давления, измеряемые в дБ, в октавных полосах со среднегеометрическими частотами 2, 4, 8 и 16 Гц;

· уровень звукового давления (при одночисловой оценке) в дБ, измеренный по шкале шумомера "линейная".

Предельно допустимые уровни инфразвука на рабочих местах, дифференцированные для различных видов работ, а также допустимые уровни инфразвука в жилых и общественных помещениях и на территории жилой застройки, приведены в таблице 6.3.

Таблица 6.3. Предельно допустимые уровни инфразвука

Назначение помещения Уровни звукового давления в октавных полосах со среднегеометрическими частотами 2, 4, 8 и 16 Гц, дБ Уровень звукового давления (при одночисловой оценке) измеренный по шкале шумомера "линейная", дБ.
       
Работы с различной степенью тяжести и напряженности трудового процесса в производственных помещениях и на территории предприятий: - работы различной степени тяжести; - работы различной степени интеллектуально-эмоциональной напряженности.                    
Территория жилой застройки          
Помещения жилых и общественных зданий          

 

Ультразвук – упругие колебания звуковой волны частотами от 16 кГц до 100 МГц и выше. Частота ультразвуковых колебаний лежит выше полосы слышимых человеческим ухом звуковых (акустических частот).

Высокая частота колебаний ультразвуковых волн способствует их колебаний (снижение амплитуды колебаний) вследствие трансформации звуковой энергии в тепловую.

Источниками ультразвука являются:

· производственное оборудование, в котором генерируется ультразвук для проведения технологических процессов, контроля и измерений;

· производственное оборудование, при эксплуатации которого ультразвук возникает как сопутствующий фактор;

· медицинское ультразвуковое оборудование.

По способу распространения ультразвук подразделяется на распространяющийся воздушным путем (воздушный ультразвук) и ультразвук, распространяющийся контактным путем при соприкосновении частей тела человека с источником ультразвука, жидкими и твердыми средами (контактный ультразвук).

Низкочастотные ультразвуковые колебания (частота до 100 кГц) способны распространяться воздушным путем, высокочастотные – только контактным путем.

При действии на биологические объекты (в том числе и на человека) в органах и тканях может возникать разность давлений до 0,1 Па, что при небольших интенсивностях ультразвука способствует лучшему обмену веществ и лучшему кровоснабжению тканей. Повышение интенсивности ультразвуковых колебаний приводит к явлению акустической кавитации, сопровождающейся разрушением клеток и тканей.

Общие требования к безопасному воздействию ультразвуковых колебаний установлены ГОСТ 12.1.001-89 ССБТ. «Ультразвук. Общие требования безопасности» [9] и распространяются на ультразвуковые колебания в диапазоне частот от 11,2 кГц до 1000 МГц, передающиеся в воздушной, жидкой и твердой средах. Стандарт устанавливает допустимые уровни ультразвука на рабочих местах, требования к ультразвуковым характеристикам оборудования, методам контроля и защиты от ультразвука.

Допустимые уровни воздушного ультразвука на рабочих местах:

· частота 12,5 кГц – 80 дБ;

· частота 16 кГц – 90 дБ;

· частота 20 кГц – 100 дБ;

· частота 25 кГц – 105 дБ;

· частота 31,5-100 кГц – 110 дБ.

Электромагнитное загрязнение.

В процессе жизнедеятельности человек постоянно испытывает воздействие естественного электромагнитного фона, к которому он как биологических вид адаптировался (приспособился) в процессе эволюции. В настоящее время вследствие научно - технического прогресса электромагнитный фон Земли претерпел существенные изменения. В его составе появились электромагнитные излучения таких длин волн, которые имеют искусственное происхождение в результате техногенной деятельности. В результате спектральная (частотная) интенсивность техногенных источников электромагнитного поля может существенно отличаться от естественного фона, к которому в процессе эволюции приспособились человек и другие виды живых организмов.

Электромагнитное поле представляет собой особую форму материи, посредством которой осуществляется взаимодействие между электрически заряженными телами, представляющая собой совокупность электрического и магнитного полей. В пространстве электромагнитное поле распространяется в виде электромагнитных волн (электромагнитное излучение).

Любое техническое устройство, использующее или вырабатывающее электрическую энергию, является источником электромагнитных полей, излучаемых во внешнюю среду. К основным источникам электромагнитных полей техногенного происхождения относятся телевизионные и радиолокационные станции, мощные радиотехнические объекты, промышленное электротехническое оборудование, электротермические установки, высоковольтные линии электропередач технической частоты, установки радиоэлектронного противодействия (стационарные и передвижные) и т.п.

Электромагнитные поля характеризуются следующими параметрами:

1. Частота электромагнитного поля и длина волны электромагнитного излучения.

2. Интенсивность электромагнитного поля.

Частота электромагнитного поля характеризует частоту электромагнитных колебаний и измеряется в герцах (Гц), килогерцах (1 кГц = 103 Гц), мегагерцах (1 МГц = 106 Гц), гигагерцах (1ГГц = 109 Гц).

Электромагнитные поля с частотой, равной нулю, называются статическими электромагнитными полями (электростатическое и магнитостатическое).

Длиной волны электромагнитного излучения называется расстояние, на которое распространяется фронт электромагнитного поля за время равное периоду электромагнитного колебания. Длина волны зависит от частоты электромагнитного поля и скорости распространения электромагнитного поля в пространстве (воздушной среде). Длина волны измеряется в метрах (м),

В зависимости от частоты и длины волны излучения электромагнитных полей подразделяются на следующие диапазоны:

1. Радиоволны – сверхдлинные (до 30 кГц, более 10 000 м), длинные (30 кГц – 300 кГц, от 1 до 10 000 м), средние (300 кГц – 3 МГц, от 100 м до 1 000 м), короткие (3 МГц – 30 МГц, от 10 м до 100 м), ультракороткие (30 МГц – 150 ГГц, от 2×10-3 м до 10 м).

2. Оптическое излучение – инфракрасное (150 ГГц – 4,29×104 ГГц, от 780×10-9 м до 2×10-3 м), видимое (4,29×104 ГГц – 7,5×104 ГГц, от 380×10-9 м до 780×10-9 м), ультрафиолетовое (7,5×104 ГГц - 3×107 ГГц, от 10×10-9 м до 380×10-9 м).

3. Ионизирующее – рентгеновское (3×107 ГГц - 6×1010 ГГц, 5×10-12 м до 10×10-9 м), гамма-излучение (более 6×1010 ГГц, менее 5×10-12 м).

Интенсивность электромагнитного поля в диапазоне до 300 МГц характеризуется:

· среднеквадратичным значением напряженности электрического поля в вольтах на метр (В/м);

· среднеквадратичным значением напряженности магнитного поля в амперах на метр (А/м), либо значением магнитной индукции в тесла (Тл).

Интенсивность электромагнитного поля в диапазоне 300 МГц – 300 ГГц характеризуется плотностью потока энергии в ваттах на квадратный метр (Вт/м2).

Нахождение в зоне с повышенными уровнями электромагнитных полей в течение определённого времени приводит к ряду неблагоприятных последствий: наблюдается усталость, тошнота, головная боль. При значительных превышениях нормативов возможны повреждение сердца, мозга, центральной нервной системы. Излучение может влиять на психику человека, появляется раздражительность, человеку трудно себя контролировать. В литературе приводятся сведения о том, что электромагнитное поле мобильных аппаратов вызывает изменения в подсистеме кровообращения головного мозга, а также изменения в биоэлектрической активности мозга [10].

Нормирование уровня воздействия электромагнитного излучения производится отдельно для производственного персонала и населения. При этом учитывается, что облучение населения может производиться круглосуточно, а производственный персонал попадает под действие электромагнитных полей только ограниченное время в производственных условиях. Вследствие этого, предельно допустимые уровни воздействия для производственного персонала в 2 – 3 раза выше, чем для населения.

В Российской Федерации предельно допустимые уровни воздействия электромагнитных полей установлены в соответствии с нормативным документом «Санитарно-эпидемиологические правила и нормативы. СанПиН 2.2.4.1191- 03. Электромагнитные поля в производственных условиях» [11].

 

Излучения оптического диапазона (инфракрасное, видимое и ультрафиолетовое) включают электромагнитные излучения частотой от 150 ГГц до 3×107 ГГц и длиной волн от 780×10-9 м до 2×10-3 м.

Длинноволновое инфракрасное и коротковолновое ультрафиолетовое излучение представляют собой невидимые для глаз электромагнитные волны. К числу естественных источников инфракрасного и ультрафиолетового излучения относится Солнце.

Инфракрасное и ультрафиолетовое излучение испускают нагретые тела, при этом, чем выше температура тела, тем больше в спектре излучения ультрафиолетовой компоненты.

Техногенными источниками инфракрасного излучения являются различные процессы и оборудование, в которых происходит трансформация (преобразование) части энергии (механической, химической, электрической, ядерной) в энергию инфракрасного излучения – электронагревательные приборы, печи с использованием жидкого, твердого и газообразного топлива, электропечи, электротехническое оборудование и электродвигатели, двигатели внутреннего сгорания, реактивные двигатели, атомные реакторы.

Инфракрасное излучение при прохождении через слой воздуха не поглощается его основными составляющими (кислород, азот, аргон). Поглощение инфракрасного излучения в воздухе связано с наличием в нем примесей (пары воды, углекислый газ). В результате при прохождении инфракрасного излучения через воздух он почти не нагревается.

Спектр инфракрасного излучения по особенностям его воздействия на биологические объекты и организм человека разделяется на коротковолновое с длинами волн до 1,4×10-6 м, средневолновое с длинами волн 1,4×10-6 м - 3×10-6 м и длинноволновое с длинами волн больше 3×10-6 м.

Наиболее опасным в части воздействия на живые организмы является инфракрасное излучение (коротковолновое инфракрасное излучение), которое способно глубоко проникать в ткани организма и интенсивно поглощаться водой, содержащейся в тканях, вызывая их термическое повреждение.

Техногенными источниками ультрафиолетового излучения являются источники, имеющие температуру выше 2000оС (электрическая дуга от сварочных работ, расплавленный металл, лазерные установки), ртутные выпрямители, люминесцентные источники освещения (газоразрядные лампы).

Спектр ультрафиолетового излучения по особенностям его воздействия на биологические объекты и организм человека разделяется на три области: УФ-А (длины волн 0,315–0,4 ×10-7 м), УФ-В (длины волн 0,28–0,315 ×10-7 м), УФ-С (длины волн 0,2-0,28×10-7 м). Ультрафиолетовое излучение с длиной волны менее 0,2×10-7 м сильно поглощается воздухом и, поэтому может распространяться только в вакууме.

Наиболее опасным является ультрафиолетовое излучение областей УФ-В и УФ-С. Наиболее чувствительными к воздействию ультрафиолетового излучения являются органы зрения и кожные покровы. Кроме того, коротковолновое ультрафиолетовое излучение от производственных источников влияет на состав атмосферного воздуха, инициируя реакции образования высокотоксичных газов – озона и оксидов азота.

Нормирование уровня воздействия от инфракрасного и ультрафиолетового излучения производится только для производственного персонала. В Российской Федерации предельно допустимые уровни воздействия инфракрасного и ультрафиолетового излучения установлены в соответствии с нормативными документами «Санитарные правила и нормы. СанПиН 2.2.4.548- 96. Гигиенические требования к микроклимату производственных помещений» [12], «Санитарные нормы. СН 4557-88. Ультрафиолетовое излучение в производственных помещениях» [13] и ГОСТ 12.1.005-88 «Воздух рабочей зоны. Общие санитарно-гигиенические требования в области рабочей зоны» [14].

Нормирование уровня воздействия осуществляется по интенсивности допустимых потоков излучения (Вт/м2) с учетом их спектрального состава, размера облучаемой площади, защитных свойств спецодежды и продолжительности воздействия в течении рабочей смены:

Инфракрасное излучение

· интенсивность теплового облучения работающих от открытых источников (нагретый металл, стекло, «открытое» пламя и др.) не должна превышать 140 Вт/м2, при этом облучению не должно подвергаться более 25 % поверхности тела и обязательным является использование средств индивидуальной защиты, в том числе средств защиты лица и глаз;

· интенсивность теплового облучения работающих от нагретых поверхностей технологического оборудования, осветительных приборов, инсоляции на постоянных и непостоянных рабочих местах не должна превышать 35 Вт/м2 при облучении 50 % поверхности тела и более, 70 Вт/м2 - при величине облучаемой поверхности от 25 до 50 % и 100 Вт/м2 - при облучении не более 25 % поверхности тела;

Ультрафиолетовое излучение

· интенсивность облучения работающих при наличии незащищенных участков поверхности кожи не более 0,2 м2 и периода облучения до 5 мин, длительности пауз между ними не менее 30 мин и общей продолжительности воздействия за смену до 60 мин - не должна превышать 50,0 Вт/м2 (область УФ-А), 0,05 Вт/м2 (область УФ-В), 0,001 Вт/м2 (область УФ-С).

· интенсивность ультрафиолетового облучения работающих при наличии незащищенных участков поверхности кожи не более 0,2 м2 (лицо, шея, кисти рук и др.), общей продолжительности воздействия излучения 50% рабочей смены и длительности однократного облучения свыше 5 мин и более не должна превышать 10,0 Вт/м2 (область УФ-А), 0,01 Вт/м2 (область УФ-В). Излучение в области УФ-С при указанной продолжительности не допускается;

· при использовании специальной одежды и средств защиты лица и рук, не пропускающих излучение (спилк, кожа, ткани с пленочным покрытием и т.п.), допустимая суммарная интенсивность облучения в области УФ-В и УФ-С (200-315 нм) не должна превышать 1 Вт/м2.

Ионизирующим излучением называется любое излучение, взаимодействие которого со средой (в том числе атмосферным воздухом) приводит к ионизации молекул и атомов (образование положительно и отрицательно заряженных ионов).

При оценке физического (энергетического) загрязнения атмосферного воздуха принимается во внимание электромагнитное рентгеновское и g-излучение, как наиболее проникающее и распространяющееся через воздушную среду.

Базовой величиной, используемой при количественных оценках воздействия ионизирующего излучения на человека является поглощенная доза, представляющая собой отношение энергии поглощенного телом излучения к массе этого тела. Единицей измерения поглощенного дозы является грей (Гр), равный 1 джоулю (Дж) энергии, поглощенной 1 кг вещества.

Биологическое воздействие ионизирующего излучения зависит не только от поглощенной телом энергии излучения, но и от глубины проникновения в живой организм, а также от особенностей органов и тканей, подвергшихся воздействию излучения. Количественной оценкой биологического воздействия ионизирующего излучения являются эквивалентная и эффективная дозы. Единицей измерения этих доз является зиверт (Зв).

Для количественной оценки ионизирующего действия рентгеновского и g-излучения применяется понятие экспозиционной дозы, которая характеризует суммарный заряд вторичных частиц (ионов), образующихся при поглощении излучения воздухом. Единицей измерения экспозиционной дозы является кулон на килограмм (Кл/кг). Внесистемной, часто используемой единицей измерения экспозиционной дозы является рентген (Р). 1 рентген равен 2,56×10-4 Кл/кг.

Человек и другие виды живых организмов постоянно подвергаются действию фонового ионизирующего излучения, связанного с проникновением в земную атмосферу космического излучения, а также с излучением горных пород, содержащих естественные радионуклиды (уран U, торий Th, радий Ra, радон Rn).

В таблице 6.4 приведены данные по максимальным величинам поглощенных доз g-излучения в воздухе помещений от природных радионуклидов, содержащихся в наиболее распространенных строительных материалах [15].

Таблица 6.4 – Мощность поглощенной дозы g-излучения (Dп) в воздухе помещений, обусловленной применением различных строительных материалов

Строительный материал Мощность поглощенной дозы g-излучения (Dп), 108 Гр/час
Гранит 28-45
Вулканический туф  
Кирпич 13-33
Бетон 15-21
Известняк 5,0
Гипс 4,0
Древесина Меньше 0,4

Из таблицы 6.4 хорошо видно, что с позиций радиационной экологии проживание и пребывание людей в деревянных зданиях, предпочтительнее.

Научно – технический прогресс в настоящее время привел к возрастанию радиационного фона за счет широкого применения искусственных источников ионизирующего излучения (рентгеновские установки, медицинское оборудование, использующее искусственные радионуклиды, технические устройства содержащие искусственные радионуклиды (датчики дыма, анализаторы состава потоков материалов, плотномеры и уровнемеры и т.д.), электронные приборы, испускающие ионизирующее излучение, которое возникает при торможении потоков электронов.

Ионизирующее излучение представляет серьезную опасность для живых организмов биосферы, в особенности для человека. Энергии ионизирующих излучений достаточно для того, чтобы вызвать разрушение атомных и молекулярных связей в живой клетке, что приводит к ее повреждению или гибели. В результате сложных биофизических и биохимических процессов, возникающих под действием ионизирующих излучений, в живых организмах могут образовываться различные соединения не свойственные здоровой ткани. Ионизирующее излучение при воздействии на организм человека может вызвать два вида эффектов, которые клинической медициной относятся к болезням:

· детерминированные (неизбежные) пороговые эффекты (лучевая болезнь, лучевой дерматит, лучевая катаракта, лучевое бесплодие, аномалии в развитии плода и др.), возникающие при облучении большими дозами;

· стохастические (вероятностные) беспороговые эффекты (злокачественные опухоли, лейкозы, наследственные болезни), возникают при облучении малыми дозами (сколь угодно малый уровень облучения обусловливает определенный риск возникновения стохастических эффектов).

.

Для контроля и нормирования воздействия ионизирующих излучения на организм человека в Российской Федерации применяются следующие нормативные документы:

1. Санитарные правила радиационной безопасности СП 2.6.758-99 «Ионизирующее излучение, радиационная безопасность. Нормы радиационной безопасности (НРБ-99) [16].

2. СП 2.6.1.799-99 Основные санитарные правила обеспечения радиационной безопасности (ОСПОРБ – 99) [17].

В соответствии с нормативными документами устанавливаются различные дозовые пределы облучения в зависимости от категории облучаемых лиц [16]:

· лица (персонал), работающие с техногенными источниками излучения (группа А);

· лица (персонал), находящиеся по условиям работы в сфере воздействия техногенных источников излучения (группа Б);

· все население, включая лиц из персонала, вне сферы и условий их производственной деятельности.

Максимально допустимые значения эффективных доз ионизирующего излучения составляют:

· для группы А – 20 мЗв/год в среднем за любые последовательные 5 лет, но не более 50 мЗв в год;

· для группы Б – 5 мЗв/год в среднем за любые последовательные 5 лет, но не более 12,5 мЗв в год;

· для всего населения - 1 мЗв/год в среднем за любые последовательные 5 лет, но не более 5 мЗв в год.

Данные нормы распространяются на следующие виды воздействия ионизирующего излучения на человека:

· в условиях нормальной эксплуатации техногенных источников излучения;

· в результате радиационной аварии;

· от природных источников излучения;

· при медицинском облучении.

Согласно Государственного доклада «О состоянии окружающей природной среды и влияние факторов среды на здоровье населения Свердловской области в 2007 году» в 2007 году индивидуальные эффективные дозы облучения на одного жителя от всех дозообразующих факторов по административным территориям составили от 2,40 до 5,61 мЗв/год (при средней областной величине 4,23 мЗв/год) [18].

К территориям с повышенными суммарными индивидуальными нагрузками (превышающими среднеобластные на 10 % и более) относятся 16 территорий: город Каменск-Уральский, Артемовский городской округ, Режевской городской округ, Кировградский город­ской округ, Качканарский городской округ, городской округ Первоуральск, Североуральский городс­кой округ, Серовский городской округ, городской округ Краснотурьинск, Алапаевское муниципальное образование, Невьянский городской округ, Сысертский городской округ, Туринский городской округ, Белоярский городской округ, Новолялинский городской округ и Шалинский городской округ. В пере­численных муниципальных образованиях проживает 1,162 млн. человек (26,4% населения области).

В структуре суммарной дозы облучения населения области, как и на протяжении многих лет, основ­ной вклад вносят медицинский (вклад 21,47%) и природный (78,28%) факторы. На долю предприятий, использующих источники ионизирующего излучения приходится 0,02% от суммарной дозы облучения.

 



Поделиться:


Последнее изменение этой страницы: 2016-09-20; просмотров: 416; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.225.11.98 (0.046 с.)