Виды интерфейсов применяемых в авиационных приборах и ИВК. Опишите предложенную структуру передачи информации. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Виды интерфейсов применяемых в авиационных приборах и ИВК. Опишите предложенную структуру передачи информации.



Стандарт MIL STD-1553B

Для локального многоточечного соединения распределенных подсистем специального назначения широко применяются стандартизированные интерфейсы последовательных мультиплексных (магистральных) каналов (МК) типа MIL-1553В, MIL-1773. Интерфейсы обеспечивают расширенные режимы адресации, включая широковещательный режим, защиту от помех и идентификацию ошибок передачи.

В состав МК входят контроллер (К), оконечные устройства (OУ) в количестве до 32, линии передачи информации. Контроллер, обыч­но входящий в состав ЭВМ, управляет обменом информацией, осуществляет сопряжение с линией передачи и контроль передачи информации, состояния ОУ и самоконтроль. Оконечное устройство принимает и выполняет адресованные ему команды контроллера, осуществляет сопряжение подключенного оборудования с линией пе­редачи информации, контролирует передачу информации, производит самоконтроль и передает результаты контроля в контроллер.

Обмен информацией осуществляется по принципу команда-отчет с временным разделением сообщений. Информация передается в МК в виде сообщений, состоящих из командных (КС), информационных (ИС) и ответных слов (ОС).

В МК предусмотрены три вида передач сообщений:

от К к ОУ;

от ОУ к К;

от ОУ к ОУ.

Порядок следования сообщений произвольный.

 

Стандарт ARINС – 429

Каналы ПК по АRINC-429 используются для передачи цифровых данных между элементами систем авиационной электроники. На бортах летательных аппаратов, гражданских и военных, до 75% цифрового межсистемного обмена приходится на каналы интерфейса ARINC-429, таким образом, этот интерфейс является основным «интеллектуальным» связующим звеном в системах авиаэлектроники.

С введением новых систем и аппаратов функции каналов ARINC-429 частично передаются на мультиплексные каналы на основе стандарта МIL-STD-1553B (ГОСТ 26765.52-87), но и на долю каналов ARINC-429 работы хватит еще на добрый десяток лет.

Стандарт АRINC-429 и его отечественные аналоги ГОСТ18977-79 и РТМ 1495-75 описывают вид, параметры сигналов, структуру кодов и протоколы сообщений.

В основу интерфейса заложен вид биполярного двухфазного сигнала (в специальной литературе описывается как RZ-код), передаваемого по бифилярной экранированной линии связи. Передача осуществляется на стандартизованных частотах (период-Т), 32-х разрядными словами ПК, включающими адресную и информационную части, и 32-й разряд - бит контроля по четности (Sum). Слова разделяются обязательной «паузой» - отсутствием сигнала в линии в течение 4-40Т, которая определяет окончание слова ПК (см. рис. 1).

 

 

Рис.1. Вид сигналов и структура слова последовательного кода по

ARING – 429

 

Биполярный сигнал RZ (рис. 1 ) обладает лучшими, по сравнению с униполярным RZ-кодом, энергетическими характеристиками. Единица представлена положительным уровнем напряжения, нуль—отрицательным. Средняя мощность равна A2/4R, т. е. половине средней мощности униполярного сигнала, хотя перепад уровней тот же самый. Код имеет два недостатка:

Ретрансляторы и приемники способны надежно восстановить синхронизирующую временную сетку только тогда, когда паузы между импульсами не слишком велики. Появление очередного импульса после незначительной паузы позволяет каждый раз корректировать «ход часов» ретранслятора или приемника. С увеличением паузы надежность «службы времени» этих устройств падает. Например, после передачи серии из 10 тыс. нулей приемник не сможет точно определить, находится ли последующая единица на позиции 9999, 10000 или 10001. Другими словами, при передаче достаточно большой последовательности нулей приемник (или ретранслятор) теряет синхронизацию с передатчиком (или ретранслятором).

Отсутствие возможности оперативной регистрации ошибок, таких, как пропадание пли появление лишних импульсов из-за помех.

Эти недостатки ликвидируются введением избыточности, а именно скорость передачи сигналов по линии выбирается равной скорости передачи информации, однако вводятся дополнительные электрические уровни. В данном случае – «нулевого» уровня. А также использованием двух фаз.

Интерфейс ARINC-429 называется радиальным, т.к. в интерфейсе обычно к одному каналу подключен только один передатчик, а каждая принимающая система должна иметь свою радиальную физическую линию связи с этим передатчиком (соединение типа звезда). Наличие в структуре кода 8-разрядной адресной части позволяет передавать в канале до 256 различных параметров. Адрес параметра, структура информационной части кода и протокол строго определяются стандартом.

 

 

Канал измерения расхода

Приборы и датчики, измеряющие расход топлива в единицу времени (расходомеры), применяются для выдерживания наиболее экономичного режима полета, отвечающего минимуму расхода горючего на километр пройденного пути (с учетом скорости полета). Эта же задача может решаться автоматически с помощью экстремального регулятора, воспринимающими устройствами которого служат датчик расхода топлива и датчик скорости полета.Зная запас топлива и его расход, можно вычислить возможную длительность и дальность полета, а также с учетом скорости полета и дальность.

Тахометрические расходомеры

Принцип действия тахометрических (скоростных или турбинных) расходомеров основан на зависимости скорости вращения расположенной в трубопроводе ненагруженной тангенциальной крыльчатки (турбины) от расхода жидкости.

Достоинством метода является пропорциональная зависимость скорости вращения крыльчатки от расхода жидкости.

Частота вращения крыльчатки зависит не только от величины расхода, но также от вязкости жидкости (температуры), что вызывает появление погрешностей прибора.

В приборах мгновенного расхода сигнал тахогенератора (напряжение или частота) служит мерой измеряемого расхода.

Математическая модель

Частота вращения ненагруженной крыльчатки пропорциональна скорости потока, т. е.

(2)

где к – коэффициент, зависящий от параметров крыльчатки; ν – скорость потока, км/ч. Мгновенный объемный расход может быть выражен формулой

(3)

а мгновенный массовый расход

(4)

где ρ – плотность жидкости, гр/см3; S – сечение трубопровода, м2; Если воспользоваться формулами (2) и (4) получим

(5)



Поделиться:


Последнее изменение этой страницы: 2016-09-20; просмотров: 1292; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.15.6.77 (0.008 с.)