cos j — коэффициент мощности нагрузки. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

cos j — коэффициент мощности нагрузки.



Мощность, потребляемая всеми тремя фазами,

При неравномерной нагрузке мощности в фазах различный (PA PB PC) и суммарная мощность, потребляемая нагрузкой, равна:

Активную мощность можно выразить также через линейные ток Iл и напряжение Uл. Учитывая зависимости между фазными и линейными токами и напряжениями для схем «звезда» и «треугольник» при равномерной нагрузке фаз, имеем: P =?3UлIлcos?

Аналогично могут быть получены формулы для реактивной и полной мощностей при равномерной нагрузке фаз: Q = 3UфIфcos? =?3UлIлcos?; S = 3UфIф=?3UлIл

50. Основным количественным параметром усилителя яв­ляется коэффициент усиления. В зависимости от функци­онального назначения усилителя различают коэффициен­ты усиления по напряжению КU, току KI или мощности КР:

где — амплитудные значения переменных составляющих соответственно напряжения и тока на входе; — амплитудные значения переменных сос­тавляющих соответственно напряжения и тока на выходе; — мощности сигналов соответственно на входе и выходе.

Коэффициенты усиления часто выражают в логариф­мических единицах — децибелах: Усилитель может состоять из одного или нескольких каскадов. Для многокаскадных усилителей его коэффициент усиления равен произведению коэффициентов усиле­ния отдельных его каскадов: К = K1 · К2 ·... · Кn. Если ко­эффициенты усиления каскадов выражены в децибелах, то общий коэффициент усиления равен сумме коэффициен­тов усиления отдельных каскадов: Обычно в усилителе содержатся реактивные элементы, в том числе и «паразитные», а используемые усилительные элементы обладают инерционностью. В силу этого коэф­фициент усиления является комплексной величиной:

где — модуль коэффициента усиления; — сдвиг фаз между входным и выходным напряже­ниями с амплитудами и Помимо коэффициента усиления, важным количест­венным показателем является коэффициент полезного действия где — мощность, потребляемая усилителем от источ­ника питания.

Роль этого показателя особенно возрастает для мощ­ных, как правило, выходных каскадов усилителя.К количественным показателям усилителя относятся также входное Rвх и выходное сопротивления усили­теля:

где и Iвх — амплитудные значения напряжения и тока на входе усилителя;

 

Классификация

· Показывающий измерительный прибор — измерительный прибор, допускающий только отсчитывание показаний значений измеряемой величины

· Регистрирующий измерительный прибор — измерительный прибор, в котором предусмотрена регистрация показаний. Регистрация значений может осуществляться в аналоговой или цифровой формах. Различают самопишущие и печатающие регистрирующие приборы

· По методу измерений

· Измерительный прибор прямого действия — измерительный прибор, например, манометр, амперметр в котором осуществляется одно или несколько преобразований измеряемой величины и значение её находится без сравнения с известной одноимённой величиной

· Измерительный прибор сравнения — измерительный прибор, предназначенный для непосредственного сравнения измеряемой величины с величиной, значение которой известно

· По форме представления показаний

· Аналоговый измерительный прибор — измерительный прибор, показания которого или выходной сигнал являются непрерывной функцией изменений измеряемой величины

· Цифровой измерительный прибор — измерительный прибор, показания которого представлены в цифровой форме

· По другим признакам

· Суммирующий измерительный прибор — измерительный прибор, показания которого функционально связаны с суммой двух или нескольких величин, подводимых к нему по различным каналам

· Интегрирующий измерительный прибор — измерительный прибор, в котором значение измеряемой величины определяются путём её интегрирования по другой величине

· по способу применения и конструктивному исполнению (стационарные, щитовые, панельные, переносные);

· по принципу действия учётом конструкции (с подвижными частями и без подвижных частей);

· для приборов с механической частью также по способу создания противодействующего момента (механическим противодействием, магнитным или на основе электромагнитных сил);

· по характеру шкалы и положению на ней нулевой точки (равномерная шкала, неравномерная, с односторонней, двухсторонней (симметричной и несимметричной), с безнулевой шкалой);

· по конструкции отсчётного устройства (непосредственный отсчёт, со световым указателем — световым зайчиком, с пишущим устройством, язычковые — вибрационные частотомеры, со шкалой на оптоэлектронном эффекте — люминофор, ЖК, СИД);

· по точности измерений (нормируемые и ненормируемые — индикаторы или указатели);

· по виду используемой энергии (физическому явлению) — электромеханические, электротепловые, электрокинетические, электрохимические;

· по роду измеряемой величины (вольтметры, амперметры, веберметры, частотомеры, варметры и т. д.)

52. Динистор представляет собой монокристалл полупроводника, в котором созданы четыре чередующиеся области с различным типом проводимости p1 - n1 - p2 - n2 (рис. 5.2, а). На границах раздела этих областей возникнут p-n-переходы: крайние переходы (J1 и J3) называются эмиттерными, а области, примыкающие к ним, - эмиттерами; средний p-n-переход (J2) называется коллекторным. Внутренние n1- и p2-области структуры называется базами. Область p1 называется анодом (А), область n2 - катодом (К).

Рис. 5.2. Структура динистора (а) и его условное графическое обозначение

Суть работы динистора заключается в том, что при прямом включении он не пропускает ток до тех пор, пока напряжение на его выводах не достигнет определённого значения. Значение этого напряжения имеет определённую величину и не может быть изменено. Это связано с тем, что динистор является неуправляемым тиристором – у него нет третьего, управляющего, вывода.

Известно, что и обычный полупроводниковый диод также имеет напряжение открытия, но оно составляет несколько сотен милливольт (500 милливольт у кремниевых и 150 у германиевых). При прямом включении полупроводникового диода он открывается при приложении к его выводам даже небольшого напряжения.

Вольт-амперная характеристика

53. http://electrono.ru/elektroizmeritelnye-pribory-i-metody-izmerenij/96-magnitoelektricheskie-pribory

54. Примесная проводимость полупроводников

Идеальные кристаллы, не содержащие никаких примесей, встречаются очень редко. Примеси в кристаллах полупроводников могут увеличивать количество электронов или дырок. Было установлено, что введение одного атома сурьмы в кубический сантиметр германия или кремния приводит к появлению одного электрона, а одного атома бора - к появлению одной дырки.

Появление электронной или дырочной проводимости при введении в идеальный кристалл различных примесей происходит следующим образом. Предположим, что в кристалле кремния один из атомов замещен атомом сурьмы. Сурьма на внешней электронной оболочке имеет пять электронов (Vгруппа периодической системы). Четыре электрона образуют парные электронные связи с четырьмя ближайшими соседними атомами кремния. Оставшийся пятый электрон будет двигаться около атома сурьмы по орбите, подобной орбите электрона в атоме водорода, но сила его электрического притяжения к ядру уменьшится соответственно диэлектрической проницаемости кремния. Поэтому, чтобы освободить пятый электрон, нужна незначительная энергия, равная примерно 0,05 эВ. Слабо связанный электрон легко может быть оторван от атома сурьмы под действием тепловых колебаний решётки при низких температурах. Такая низкая энергия ионизации примесного атома означает, что при температурах около -100°С, все атомы примесей в германии и кремнии уже ионизированы, а освободившиеся электроны участвуют в процессе электропроводности. В этом случае основными носителями заряда будут электроны, т.е. здесь имеет место электронная проводимость или проводимостьn-типа (п - первая буква словаnegative).После того как «лишний», пятый, электрон удалён, атом сурьмы становится положительно заряженным ионом, имеющим четыре валентных электрона, как и все атомы кремния, т.е. ион сурьмы становится заместителем кремния в кристаллической решётке.

Примеси, обусловливающие возникновение электронной проводимости в кристаллах, называются донорами. Для кремния и германия ими являются элементы Vгруппы таблицы Менделеева - сурьма, фосфор, мышьяк и висмут.

Трёхвалентный атом примеси бора в решётке кремния ведёт себя по-иному. На внешней оболочке атома бора имеются только три валентных электрона. Значит, не хватает одного электрона, чтобы заполнить четыре валентные связи с четырьмя ближайшими соседями. Свободная связь может быть заполнена электроном, перешедшим из какой-либо другой связи, эта связь заполнится электронами следующей связи и т.д. Положительная дырка (незаполненная связь) может перемещаться по кристаллу от одного атома к другому (при движении электрона в противоположном направлении). Когда электрон заполнит недостающую валентную связь, примесный атом бора станет отрицательно заряженным ионом, заменяющим атом кремния в кристаллической решётке. Дырка будет слабо связана с атомом бора силами электростатического притяжения и будет двигаться около него по орбите, подобной орбите электрона в атоме водорода. Энергия ионизации, т.е. энергия, необходимая для отрыва дырки от отрицательного иона бора, будет примерно равна 0,05 эв. Поэтому при комнатной температуре все трёхвалентные примесные атомы ионизированы, а дырки принимают участие в процессе электропроводности. Если в кристалле кремния имеется примесь трёхвалентных атомов (IIIгруппа периодической системы), то проводимость осуществляется в основном дырками Такая проводимость носит название дырочной или проводимости р-типа (р - первая буква словаpositive). Примеси, вызывающие дырочную проводимость, называются акцепторами. К акцепторам в германии и кремнии относятся элементы третьей группы периодической системы: галлий, таллий, бор, алюминий.
Количество носителей тока, возникающих при введении примеси каждого вида в отдельности, зависит от концентрации примеси и энергии её ионизации в данном полупроводнике. Однако большинство практически используемых примесей при
комнатной температуре полностью ионизировано, поэтому концентрация

носителей, создаваемая при этих условиях примесями, определяется только концентрацией примеси, и во многих случаях равна числу введенных в полупроводник атомов примеси.

Каждый атом донорной примеси вносит один электрон проводимости, следовательно, чем больше донорных атомов в каждом кубическом сантиметре полупроводника, тем больше концентрация их превышает концентрацию дырок, и проводимость носит электронный характер. Обратное положение имеет место при введении акцепторных примесей.

При равной концентрации донорной и акцепторной примесей в кристалле проводимость будет обеспечиваться, как и в собственном полупроводнике, электронами и дырками за счёт разрыва валентных связей. Такой полупроводник называется компенсированным.

Количество электричества, переносимого дырками или электронами, определяется не только концентрацией носителей, но и подвижностью электронов и дырок.

56. Лавинный пробой – возникает в широком электронно-дырочном переходе. Неосновные носители заряда, ускоряются большим обратным напряжением и приобретают значительную энергию, которой хватает, чтобы столкнувшись с атомами кристаллической решетки, оторвать валентные электроны. Электрон, уходя со своего места, создает дырку. И вновь созданные носители снова ускоряются полем и также отрывают другие электроны. Процесс происходит лавинообразно. Отсюда название пробоя.

Туннельный пробой возникает в узких p-n переходах. Под действием большой напряженности поля, валентные электроны отрываются от своих атомов, образую при этом дырку, и увеличивают обратный ток. Такой пробой возникает только в узких переходах, потому что в них при небольших значениях напряжения, возникает значительная напряженность электрического поля.

 

ПРОБОЙ р-n ПЕРЕХОДА

Как отмечалось выше, при рабочих величинах обратных напряжений I 0 неве­лик. Однако при превышении определенного уровня U обратный ток реального р-п перехода быстро увеличивается, т. е. наступает пробой. Под пробоем р-п перехода понимается явление резкого увеличения обратного тока при до­стижении обратным напряжением определенного критического значения. Все разновидности пробоя р-п перехода можно разделить на две основные группы пробоев: электрические и тепловые. Электрические пробои связаны с увеличе­нием напряженности электрического поля в запорном слое р-п перехода, а теп­ловые - с увеличением рассеиваемой мощности и соответственно температу­ры.

Рассмотрим, прежде всего, основные разновидности электрического пробоя: полевой (зенеровский), лавинный и поверхностный. Вид ВАХ электрического пробоя представлен на рис. 1.13. Основное внешнее отличие разновидностей электрического пробоя проявляется в величинах пробивного напряжения.

В узких р-п переходах при относительно небольших обратных напряжениях (U ≤ 7В) обычно возникает полевой пробой. В основе полевого пробоя могут лежать несколько эффектов. Так, под действием большой напряженности элек­трического поля становится возможной генерация носителей заряда энергиями меньше ε3. При малых пробивных напряжениях основным эффектом, опреде­ляющим развитие полевого пробоя, становится туннельный. Электрический пробой, возникающий под действием этого эффекта, часто называют туннель­ным.

В относительно широких р-n переходах при обратных напряжениях больше 15 В возникает лавинный пробой, механизм которого заключается в лавинном размножении носителей заряда в сильном электрическом поле под действием ударной ионизации. Электрон и дырка в запорном слое р-п перехода, ускорен­ные электрическим полем на длине своего свободного пробега, могут при столкновении с решеткой кристалла разорвать валентную связь. В результате рождается новая пара «электрон-дырка» и процесс повторяется под действием этих новых носителей. Таким образом, сопротивление р-п перехода начинает падать, а ток резко возрастать.

Для того чтобы носители заряда успели приобрести высокую скорость, не­обходимую при ударной ионизации, путь и время их разгона должны быть относительно велики. Поэтому лавинный пробой и наблюдается только в ши­роких р-п переходах, т. е. переходах, использующих слаболегированные полу­проводники.

В области р-п перехода, выступающей на поверхность, обычно имеет место значительное изменение напряженности электрического поля. Поверхностный заряд может привести как к уменьшению, так и к увеличению l. В результате этого на поверхности р-п перехода происходит электрический пробой при на­пряжении, меньшем, чем в объеме. Это явление носит название поверхностного пробоя. Большую роль в возникновении поверхностного пробоя играют диэ­лектрические свойства поверхностных покрытий.

В некоторых случаях раньше, чем возникнет электрический пробой, может произойти тепловой. В принципе существует несколько разновидностей и теп­лового пробоя - обычно различные локальные пробои. Однако основной интерес представляет тепловой пробой, возникающий за счет большого l о. Этот пробой возникает в тех случаях, когда не обеспечивается необходимый отвод тепла от р-п перехода.

Чаще всего тепловой пробой возникает в мощных германиевых р-п перехо­дах, поскольку в них протекает большой обратный ток. Поскольку l о велик, то даже при небольших обратных напряжениях (меньших напряжения электриче­ского пробоя) выделяется большая мощность Р =UI 0. Эта мощность нагревает р-п переход, что вызывает возрастание I 0, который, в свою очередь, увеличи­вает Р. Такая взаимосвязь приводит к резкому увеличению тока, т. е. к пробою р-п перехода.

На рис. 1.14 приведена типовая обратная ветвь ВАХ р-п перехода при теп­ловом пробое. Такая характеристика имеет участок с отрицательным дифференциальным сопротивлением. Начало этого участка соответствует температуре р-п перехода, близкой к tкр.

Заметим, что если I 0 вырос благодаря электрическому пробою, то после этого может наступить тепловой пробой. Соответственно на ВАХ после верти­кального пробойного участка, свойственного электрическому пробою, может иметь место участок с отрицательным сопротивлением.

Необходимо подчеркнуть, что тепловой пробой является крайне нежела­тельным явлением, поскольку он приводит к выходу р-п перехода из строя. Поэтому в тех случаях, когда возможен тепловой пробой, необходимо после­довательно с р-п переходом включать токоограничивающее сопротивление.

 

 

57. Измерение мощности. В цепях постоянного тока мощность измеряют электро- или ферродинамическим ваттметром. Мощность может быть также подсчитана перемножением значений тока и напряжения, измеренных амперметром и вольтметром.

В цепях однофазного тока измерение мощности может быть осуществлено электродинамическим, ферродинамическим или индукционным ваттметром. Ваттметр 4 (рис. 336) имеет две катушки: токовую 2, которая включается в цепь последовательно, и напряжения 3, которая включается в цепь параллельно.

Ваттметр является прибором, требующим при включении соблюдения правильной полярности, поэтому его генераторные зажимы (зажимы, к которым присоединяют проводники, идущие со стороны источника 1) обозначают звездочками.

Рис. 336. Схема для измерения мощности

Для расширения пределов измерения ваттметров их токовые катушки включают в цепь при помощи шунтов или измерительных трансформаторов тока, а катушки напряжения — через добавочные резисторы или измерительные трансформаторы напряжения.

Измерение электрической энергии. Способ измерения. Для учета электрической энергии, получаемой потребителями или отдаваемой источниками тока, применяют счетчики электрической энергии. Счетчик электрической энергии по принципу своего действия аналогичен ваттметру. Однако в отличие от ваттметров вместо спиральной пружины, создающей противодействующий момент, в счетчиках предусматривают устройство, подобное электромагнитному демпферу, создающее тормозящее усилие, пропорциональное частоте вращения подвижной системы. Поэтому при включении прибора в электрическую цепь возникающий вращающий момент будет вызывать не отклонение подвижной системы на некоторый угол, а вращение ее с определенной частотой.

Число оборотов подвижной части прибора будет пропорционально произведению мощности электрического тока на время, в течение которого он действует, т. е. количеству электрической энергии, проходящей через прибор. Число оборотов счетчика фиксируется счетным механизмом. Передаточное число этого механизма выбирают так, чтобы по показаниям счетчика можно было отсчитывать не обороты, а непосредственно электрическую энергию в киловатт-часах.

Наибольшее распространение получили ферродинамические и индукционные счетчики; первые применяют в цепях постоянного тока, вторые — в цепях переменного тока. Счетчики электрической энергии включают в электрические цепи постоянного и переменного тока так же, как и ваттметры.

Ферродинамический счетчик (рис. 337) устанавливают на э. п. с. постоянного тока. Он имеет две катушки: неподвижную 4 и подвижную 6. Неподвижная токовая катушка 4 разделена на две части, которые охватывают ферромагнитный сердечник 5 (обычно из пермаллоя). Последний позволяет создать в приборе сильное магнитное поле и значительный вращающий момент, обеспечивающий нормальную работу счетчика в условиях тряски и вибраций. Применение пермаллоя способствует уменьшению погрешности счетного механизма 2 от гистерезиса магнитной системы (он имеет весьма узкую петлю гистерезиса).

Чтобы уменьшить влияние внешних магнитных полей на показания счетчика, магнитные потоки отдельных частей токовой катушки имеют взаимно противоположное направление (астатическая система). При этом внешнее поле, ослабляя поток одной части, соответственно усиливает поток другой части и оказывает в целом небольшое влияние на результирующий вращающий момент, создаваемый прибором. Подвижная катушка 6 счетчика (катушка напряжения) расположена на якоре, выполненном в виде диска из изоляционного материала или в виде алюминиевой чаши. Катушка состоит из отдельных секций, соединенных с пластинами коллектора 7 (эти соединения на рис. 337 не показаны), по которому скользят щетки из тонких серебряных пластин.

Ферродинамический счетчик работает принципиально как двигатель постоянного тока, обмотка якоря которого подключена параллельно, а обмотка возбуждения — последовательно с потребителем электроэнергии. Якорь вращается в воздушном зазоре между полюсами сердечника. Тормозной момент создается в результате взаимодействия потока постоянного магнита 1 с вихревыми токами, возникающими в алюминиевом диске 3 при его вращении.

Для компенсации влияния момента трения и уменьшения благодаря этому погрешности прибора в ферродинамических счетчиках устанавливают компенсационную катушку или в магнитном поле неподвижной (токовой) катушки помещают лепесток из пермаллоя, который имеет высокую магнитную проницаемость при малой напряженности поля. При небольших нагрузках этот лепесток усиливает магнитный поток токовой катушки, что приводит к увеличению вращающего момента и компенсации трения. При увеличении нагрузки индукция магнитного поля катушки увеличивается, лепесток насыщается и его компенсирующее действие перестает возрастать.

При работе счетчика на э. п. с. возможны сильные толчки и удары, при которых щетки могут отскакивать от коллекторных пластин. При этом под щетками будет возникать искрение. Для его предотвращения между щетками включают конденсатор С и резистор R1. Компенсация температурной погрешности осуществляется с помощью термистора Rт (полупроводникового прибора, сопротивление которого зависит от температуры). Он включается совместно с добавочным резистором R2 параллельно подвижной катушке. Чтобы уменьшить влияние тряски и вибраций на работу счетчиков, их устанавливают на э. п. с. на резинометаллических амортизаторах.

Индукционный счетчик имеет два электромагнита (рис. 338,а), между которыми расположен алюминиевый диск 7. Вращающий момент в приборе создается в результате взаимодействия переменных магнитных потоков Ф1 и Ф2, созданных катушками электромагнитов, с вихревыми токами Iв1 и Iв2, индуцируемыми ими в алюминиевом диске (так же, как и в обычном индукционном измерительном механизме, см. § 99).

В индукционном счетчике вращающий момент М должен быть пропорционален мощности P=UIcos?. Для этого катушку 6 одного из электромагнитов (токовую) включают последовательно с нагрузкой 5, а катушку 2 другого (катушку напряжения) — параллельно нагрузке. В этом случае магнитный поток Ф1 будет пропорционален току I в цепи нагрузки, а поток Ф2 — напряжению U, приложенному к нагрузке. Для обеспечения требуемого угла сдвига фаз? между потоками Ф1 и Ф2 (чтобы sin? = cos?) в электромагните катушки напряжения предусмотрен магнитный шунт 3, через который часть потока Ф2 замыкается помимо диска 7. Угол сдвига фаз между потоками Ф1 и Ф2 точно регулируется изменением положения металлического экрана 1, расположенного на пути потока, ответвляющегося через магнитный шунт 3.

Тормозной момент создается так же, как в ферродинамическом счетчике. Компенсация момента трения осуществляется путем создания небольшой несимметрии в магнитной цепи одного из электромагнитов с помощью стального винта.

Для предотвращения вращения якоря при отсутствии нагрузки под действием усилия, созданного устройством, компенсирующим трение, на оси счетчика укрепляется стальной тормозной крючок. Этот крючок притягивается к тормозному магниту 4, благодаря чему предотвращается возможность вращения подвижной системы без нагрузки.

При работе же счетчика под нагрузкой тормозной крючок практически не влияет на его показания.

Чтобы диск счетчика вращался в требуемом направлении, необходимо соблюдать определенный порядок подключения проводов к его зажимам. Нагрузочные зажимы прибора, к которым подключают провода, идущие от потребителя, обозначают буквами Я (рис. 338,б), генераторные зажимы, к которым подключают провода от источника тока или от сети переменного тока,— буквами Г.

 

Рис. 337. Ферродинамический счетчик электрической энергии

 

Рис. 338. Индукционный счетчик электрической энергии

 



Поделиться:


Последнее изменение этой страницы: 2016-08-14; просмотров: 197; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.128.200.157 (0.066 с.)