Вопрос 25: Рентгеновское излучение. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Вопрос 25: Рентгеновское излучение.



Открытие рентгеновского излучения приписывается Вильгельму Конраду Рёнтгену. Он был первым, кто опубликовал статью о рентгеновских лучах, которые он назвал икс-лучами (x-ray). За открытие рентгеновских лучей Рентгену в 1901 году была присуждена первая Нобелевская премия по физике, причём нобелевский комитет подчёркивал практическую важность его открытия. Рентгеновское излучение — электромагнитные волны, энергия фотонов которых лежит на энергетической шкале между ультрафиолетовым излучением и гамма-излучением, что соответствует длинам волн от 10−14 до 10−8 м. Энергетические диапазоны рентгеновского излучения и гамма-излучения перекрываются в широкой области энергий. Оба типа излучения являются электромагнитным излучением и при одинаковой энергии фотонов — эквивалентны. Терминологическое различие лежит в способе возникновения — рентгеновские лучи испускаются при участии электронов (либо в атомах, либо свободных) в то время как гамма-излучение испускается в процессах девозбуждения атомных ядер. Мягкий рентген характеризуется наименьшей энергией фотона и частотой излучения (и наибольшей длиной волны), а жёсткий рентген обладает наибольшей энергией фотона и частотой излучения (и наименьшей длиной волны). Жёсткий рентген используется преимущественно в промышленных целях. Рентгеновские лучи возникают при сильном ускорении заряженных частиц (тормозное излучение), либо при высокоэнергетичных переходах в электронных оболочках атомов или молекул. Оба эффекта используются в рентгеновских трубках, в которых электроны, испущенные катодом, ускоряются под действием разности электрических потенциалов между анодом и катодом (при этом рентгеновские лучи не испускаются, т. к. ускорение слишком мало) и ударяются об анод, где они резко тормозятся и в то же время выбивают электроны из внутренних электронных оболочек атомов анода. Пустые места в оболочках занимаются другими электронами атома. При этом испускается рентгеновское излучение с характерным для материала анода спектром энергий (характеристическое излучение, частоты определяются законом Мозли: = A(Z - B), где Z — атомный номер элемента анода, A и B — константы для определённого значения главного квантового числа n электронной оболочки). Рентгеновское излучение является ионизирующим. Оно воздействует на ткани живых организмов и может быть причиной лучевой болезни, лучевых ожогов и злокачественных опухолей. По причине этого при работе с рентгеновским излучением необходимо соблюдать меры защиты. Считается, что поражение прямо пропорционально поглощённой дозе излучения. Рентгеновское излучение является мутагенным фактором.

 

Вопрос 24: Пироэлектрические приборы для измерения температуры тела.

Пирометр — прибор для бесконтактного измерения температуры тел. Принцип действия основан на измерении мощности теплового излучения объекта измерения преимущественно в диапазонах инфракрасного излучения и видимого света. Один из первых пирометров изобретён Pieter van Musschenbroeck (1692—1761). Изначально термин использовался применительно к приборам, предназначенным для измерения температуры визуально, по яркости и цвету сильно нагретого (раскалённого) объекта. В настоящее время смысл несколько расширен, в частности, некоторые типы пирометров (такие приборы правильнее называть инфракрасные радиометры) измеряют достаточно низкие температуры (0 °C и даже ниже), при которых тепловое излучение не видно человеческим глазом. Односпектральные пирометры принимают излучение в одном спектральном диапазоне, при этом диапазон может быть достаточно широким. Далее по измеренному значению мощности определяется температура. Существуют следующие подтипы односпектральных пирометров: 1) Яркостные. Сравниваются яркости (как правило, визуально, в диапазоне красного света) объекта измерения и эталонного нагретого тела. 2) Радиационные. Мощность теплового излучения измеряется и пересчитывается в температуру. Односпектральные пирометры, принимающие настолько широкую спектральную полосу, что она содержит значительную часть полной мощности теплового излучения, называют пирометрами полного излучения. Мультиспектральные пирометры (также известны как пирометры спектрального отношения и цветовые пирометры) принимают излучение в двух и более спектральных диапазонах. Температура объекта определяется путём сравнения мощностей в различных диапазонах. Теплоэнергетика — для быстрого и точного контроля температуры на участках не доступных или мало доступных для другого вида измерения. Электроэнергетика контроль и пожарная безопасность, эксплуатация объектов. (Железнодорожный транспорт — контроль температуры букс и ответственных узлов грузовых и пассажирских вагонов).

 

Вопрос 23: Формула Планка.

Формула Планка — выражение для спектральной плотности мощности излучения абсолютно чёрного тела, которое было получено Максом Планком для равновесной плотности излучения u(ω,T). После того как вывод Рэлея — Джинса для излучения абсолютно чёрного тела, столкнулся с ультрафиолетовой катастрофой (расходимость при больших частотах), стало ясно, что классическая физика не в силах объяснить его излучение. Для вывода формулы Планк в 1900 году сделал предположение о том, что электромагнитное излучение испускается в виде отдельных порций энергии (квантов), величина которых связана с частотой излучения выражением:

По сути это было «рождение» фотона. Коэффициент пропорциональности в последствии назвали постоянной Планка, = 1.054 · 10-34 Дж·с. Выражение для средней энергии колебания частотой ω дается выражением:

.

Количество стоячих волн в трёхмерном пространстве равно:

перемножив (1) и (2), получим плотность энергии, приходящуюся на интервал частот dω:

откуда:

Зная связь испускательной способности абсолютно чёрного тела f (ω, T) с равновесной плотностью энергией теплового излучения , для f (ω, T) находим:

Выражения (3) и (4)носят название формулы Планка. Испускательную способность АЧТ, выраженную через длину волны λ т.е. можно выразить используя соотношение:

, получим

 



Поделиться:


Последнее изменение этой страницы: 2016-08-12; просмотров: 348; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.174.168 (0.007 с.)