Методы регистрации элементарных частиц 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Методы регистрации элементарных частиц



Элементарные частицы удается наблюдать благодаря тем следам, которые они оставляют при прохождении через вещество. Характер следов позволяет судить о знаке заряда частицы, ее энергии, импульсе и т. п. Заряженные частицы вызывают ионизацию молекул на своем пути. Нейтральные частицы следов не оставляют, но они могут себя обнаружить в момент распада на заряженные частицы или в момент столкновения с каким-либо ядром. Следовательно, в конечном счете нейтральные частицы также обнаруживаются по ионизации, вызванной порожденными ими заряженными частицами.

Приборы, применяемые для регистрации ионизирующих частиц, подразделяются на две группы. К первой группе относятся приборы, которые регистрируют факт пролета частицы и, кроме того, позволяют в отдельных случаях судить об ее энергии. Вторую группу образуют так называемые трековые приборы, т. е. приборы, позволяющие наблюдать следы (треки) частиц в веществе.

К числу регистрирующих приборов относятся сцинтилляционный счетчик, черенковский счетчик, ионизационная камера, газоразрядный счетчик, полупроводниковый счетчик.

1. Сцинтилляционный счетчик. Заряженная частица, пролетающая через вещество, вызывает не только ионизацию, но и возбуждение атомов. Возвращаясь в нормальное состояние, атомы испускают видимый свет. Вещества, в которых заряженные частицы вызывают заметную световую вспышку (сцинтилляцию), называются фосфорами. Наиболее употребительными фосфорами являются (сернистый цинк, активированный серебром) и (йодистый натрий, активированный таллием).

Сцинтилляционный счетчик состоит из фосфора, от которого свет по специальному световоду подается к фотоумножителю. Импульсы, получающиеся на выходе фотоумножителя, подвергаются счету. Определяется также амплитуда импульсов, пропорциональная интенсивности вспышки. Это дает дополнительную информацию о регистрируемых частицах. Для этого типа счетчиков эффективность регистрации для заряженных частиц 100 %.

2. Черенковский счетчик. Принцип действия этого счетчика рассмотрен в п. 3.3.3. (с. 84). Назначение счетчиков – это измерение энергии частиц, движущихся в веществе со скоростью, превышающей фазовую скорость света в данной среде. Кроме этого, счетчики позволяют разделять частицы по массе. Зная угол испускания излучения, можно определить скорость частицы, что при известной массе равносильно определению ее энергии. Если же масса частицы неизвестна, то она может быть определена по независимому измерению энергии частицы.

Черенковские счетчики устанавливаются на космических кораблях для исследования космического излучения.

3. Ионизационная камера представляет собой электрический конденсатор, заполненный газом, к электродам которого подается постоянное напряжение. Регистрируемая частица, попадая в пространство между электродами, ионизует газ. Напряжение на обкладках конденсатора подбирается так, чтобы все образовавшиеся ионы, с одной стороны, доходили до электродов, не успев рекомбинировать, а с другой – не разгонялись настолько сильно, чтобы производить вторичную ионизацию. Следовательно, на обкладках собираются ионы, возникшие непосредственно под действием заряженных частиц: измеряется суммарный ионизационный ток либо регистрируется прохождение одиночных частиц. В последнем случае камера работает как счетчик.

4. Газоразрядный счетчик обычно выполняется в виде наполненного газом металлического цилиндра с тонкой проволокой, натянутой по его оси. Цилиндр служит катодом, проволока – анодом. В отличие от ионизационной камеры в газоразрядном счетчике основную роль играет вторичная ионизация. Различают два типа газоразрядных счетчиков: пропорциональные счетчики и счетчики Гейгера–Мюллера. В первых – газовый разряд несамостоятельный, во вторых – самостоятельный.

В пропорциональных счетчиках выходной импульс пропорционален первичной ионизации, т. е. энергии частицы, влетевшей в счетчик. Поэтому эти счетчики не только регистрируют частицу, но и измеряют ее энергию.

Счетчик Гейгера–Мюллера по конструкции и принципу действия существенно не отличается от пропорционального счетчика, но он работает в области вольтамперной характеристики, соответствующей самостоятельному разряду, т. е. в области высоких напряжений, когда выходной импульс не зависит от первичной ионизации. Этот счетчик регистрирует частицу без измерения ее энергии. Для регистрации отдельных импульсов возникший самостоятельный разряд нужно гасить. Для этого последовательно с нитью (анодом) включается такое сопротивление, чтобы возникший в счетчике ток разряда вызывал на сопротивлении падение напряжения, достаточное для прерывания разряда.

5. Полупроводниковый счетчик. Основным элементом этого счетчика является полупроводниковый диод, который имеет очень малую толщину рабочей области (десятые доли миллиметра). Вследствие этого счетчик не может регистрировать высокоэнергетические частицы. Но он обладает высокой надежностью и может работать в магнитных полях, поскольку для полупроводников магниторезистивный эффект (зависимость сопротивления от напряженности магнитного поля) очень мал.

К числу трековых приборов относятся камера Вильсона, диффузионная камера, пузырьковая камера и ядерные фотоэмульсии.

1. Камера Вильсона. Так называют прибор, созданный английским физиком Вильсоном в 1912 г. Дорожка из ионов, проложенная летящей заряженной частицей, становится видимой в камере Вильсона, потому что на ионах происходит конденсация пересыщенных паров какой-либо жидкости. Выполняется камера обычно в виде стеклянного цилиндра с плотно прилегающим поршнем. Цилиндр наполняется нейтральным газом, насыщенным парами воды или спирта. При резком расширении газа пар становится пересыщенным, и на траекториях частиц, пролетевших через камеру, образуются треки из тумана, которые фотографируются под разными углами. По внешнему виду треков можно судить о типе пролетевших частиц, об их количестве и их энергии. Поместив камеру в магнитное поле, можно по искривлению траекторий частиц судить о знаке их заряда.

Камера Вильсона долгое время была единственным прибором трекового типа. Однако и она не лишена недостатков, главный из которых – малое рабочее время, которое составляет примерно 1 % от времени, затрачиваемого на подготовку камеры к очередному запуску.

2. Диффузионная камера является разновидностью камеры Вильсона. Пересыщение достигается диффузией паров спирта от нагреваемой крышки к охлаждаемому дну. Возле дна возникает слой пересыщенного пара, в котором пролетающие заряженные частицы создают треки. В отличие от камеры Вильсона диффузионная камера работает непрерывно.

3. Пузырьковая камера. Этот прибор тоже является модификацией камеры Вильсона. Рабочим веществом является перегретая жидкость под высоким давлением. Резким сбросом давления жидкость переводится в неустойчивое перегретое состояние. Пролетающая частица вызывает резкое вскипание жидкости, и траектория оказывается обозначенной цепочкой пузырьков пара. Трек, как и в камере Вильсона, фотографируется.

Пузырьковая камера работает циклами. Ее размеры такие же, как и размеры камеры Вильсона. Жидкость много плотнее пара, что позволяет использовать камеру для исследования длинных цепей рождений и распадов высокоэнергетических частиц.

4. Ядерные фотоэмульсии. При использовании этого метода регистрации заряженная частица проходит в эмульсии, вызывая ионизацию атомов. После проявления эмульсии следы заряженных частиц обнаруживаются в виде цепочки зерен серебра. Эмульсия – среда более плотная, чем пар в камере Вильсона или жидкость в пузырьковой камере, поэтому протяженность трека в эмульсии более короткая. (Трек длиной в эмульсии соответствует треку длиной в камере Вильсона.) Метод фотоэмульсий применяется для изучения частиц сверхвысоких энергий, которые находятся в космических лучах либо получаются в ускорителях.

Преимущества счетчиков и трековых детекторов объединены в искровых камерах, в которых быстрота регистрации, свойственная счетчикам, сочетается с более полной информацией о частицах, получаемой в камерах. Можно сказать, что искровая камера – это набор счетчиков. Информация в искровых камерах выдается немедленно, без последующей обработки. В то же время по действию многих счетчиков можно установить треки частиц.

 



Поделиться:


Последнее изменение этой страницы: 2016-08-10; просмотров: 1659; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.138.204.166 (0.007 с.)