Шляхи, методи й засоби підвищення надійності й продовження експлуатації пгв-1000 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Шляхи, методи й засоби підвищення надійності й продовження експлуатації пгв-1000



На п'ятьох атомних електростанціях Україні експлуатуються двоконтурні енергоблоки з реакторами ВВЕР-1000 і парогенераторами ПГВ-1000. Устаткування реакторного відділення виконане в Росії в 80-і роки минулого століття. Причому, реакторі й ПГ Южно-Української АЕС, поряд з устаткуванням Калінінської АЄС Росії, булі головними зразками встаткування даної потужності. Проектній рядків експлуатації основного встаткування був встановлень в 30 років. Однак до теперішнього часу віробіток ресурсу більшості ПГВ-1000 наближається до граничного. Виробіток ресурсу встаткування АЕС і неминучий вивід з експлуатації встаткування пиловугільних ТЕС, що достигнули граничного фізичного й морального зношування може привести до зниження загального резерву потужностей енергетики Україні до небезпечного рівня. Тому розробка заходів, спрямованих на підвищення безпечної й надійної роботі основного встаткування АЕС і продовження рядок експлуатації понад проектний є актуальнім завданням.

Досвід експлуатації із ВВЕР-1000 в Україні, Росії, Болгарії показавши, що основна причина позапланових остановів і зниження економічності блоку порушення режиму роботі ПГ.

Парогенератор - найважливіша ділянка технологічної схемі АЄС і вузол перетинання двох контурів. У ПГ забезпечується передача теплоті, що виділяється в ядерному реакторі й сприйнята робітничим середовищем першого контуру, робочому тілу іншого контуру, енергія якого використується в паротурбінній установці.

Основні частини парогенератора: корпус із патрубками підведення води, відводу парі й виводу продування іншого контуру, розміщені усередині корпуси системі роздачі живильної води й сепарації парі, пучок теплообмінних трубок (трубна решітка), приєднана до колекторів підвода й відводу теплоносія (робочого середовища першого контуру), дистанциніруючі елементи трубної решітки.

Надійність й ефективність роботі ПГ, як і будь-якого теплообмінного прибудую залежіть від властивостей використаних матеріалів, конструктивного рішення й водно-хімічного режиму експлуатації. Тому для продовження рядок експлуатації блоку понад проектний можливі два шляхи: удосконалення конструкції ПГ й оптимізація водно-хімічного режиму іншого контуру.

При виборі технічних рішень був використаній досвід теплової енергетики й узагальненій досвід експлуатації закордонних АЕС.

Парогенераторі ПГВ-1000, виготовлені котельнім заводом ім. Орджонікідзе, м. Подольськ (у цей час ВАТИ ЗІО), ставляться до іншого покоління ПГ. Основні конструкційні рішення по виконанню й розміщенню трубної системі теплоносія, систем подачі живильної води, продування й сепарації парі виконані аналогічно успішно працюючим ПГ першого покоління (що працювали із ВВЕР-210 -365, -440).

Однак у зв'язку зі збільшенням теплової потужності й обмеження з розумів транспортування розмірів корпусу, у ПГВ-1000 приблизно вдвічі зросли робочі паронавантаження дзеркала випару й парового обсягу й, як наслідок, погіршилися умові гравітаційної сепарації.

Для вирівнювання швидкостей підйому парі по довжіні ПГ, що забезпечує зниження викиду пароводяної суміші в паровій обсяг, у водяному обсязі був передбаченій заглибній дірчастій лист (ЗДЛ) із закраїнами, а для зниження вологості парі - жалюзійній сепаратор.

Схема із ЗДЛ була теоретично й експериментально розроблена в ЦКТІ ім. І. В. Ползунова в 1938 р. стосовно до суднових парових котлів і не припускала використання жалюзійного сепаратора. У стаціонарних барабанних казанах вона успішно використалася ОРГРЕС, причому для забезпечення рівномірного відбору парі уздовж барабана застосовувався стельовій пароприємний щит.

У процесі експлуатації встановлено, що основною причиною змушених остановів блоків є порушення герметичності теплообмінних трубок парогенератора й поява тріщин у гарячому колекторі.

У ході досліджень, виконаних на Калінінської АЄС, було з'ясовано, що більша частина дефектів теплообмінніх трубок з’явилася у верхніх рядах (у районах, що прилягають до «гарячого» колектору ПГ) і приблизно третина дефектів у самих нижніх рядах. Імовірною причиною появі дефектів у верхніх рядах з’явилася корозія під дистанціонуючий решіткою по механізму міжкристалевого розтріскування, а дефекті в нижніх рядах булі викликані багатофакторною електрохімічною корозією по системі «мідь-аустенітна сталь».

Для дослідження механізму й причин утворення дефектів Національнім науковім центром «Харківський фізико-технічній інститут» булі випробувані відрізки трубної решітки, на яких булі виявлені дефекті у вигляді корозійних виразок і тріщин. Проведені мікрорентгеноспектральні дослідження показали, що у виразках утримується значна кількість міді (до 30 %), у деяких з них утримується також цинк. Заподій утворення дефектів досліджувалися на основі багатофакторного системного аналізу роботі іншого контуру.

Причина корозії - якість металу, присутність у живільній воді міді й цинку, нерівномірність сольовмісту води усередині корпуси ПГ і підвищення його наднормативного.

Засобами підвищення надійності трубної решітки є заміна сталі типові Х18Н10Т сталлю 08Х14МФ. Дослідження проведені після різних методик показали, що сталь 08Х14МФ не схильна до хлоридного корозійного розтріскування й міжкристалевої корозії у водних середовищах, що містіть хлориді й кисень. При температурах 20...350 ˚С зберігає високі пластичні характеристики й ударну в'язкість. Найважливішими перевагами є більше нізький коефіцієнт лінійного розширення, більш висока теплопровідність і відсутність у хімічному складі нікелю.

Причина появи тріщин у колекторі - поява в металі колектора значних напруг у наслідку малого зазору між горловиною колектора першого контуру й люком іншого контуру, тобто відбувався процес «защемлення» колектора. На Калінінської АЕС послідовно проведені «разневолювання», що полягало в проведенні робіт зі збільшення зазору до 7 мм і двічі проведені низькотемпературні обробки шкірного ПГ. Цей захід імовірно, дозволити збільшити ресурс колекторів парогенераторів.

Проектна схема водоживлення й продування парогенераторів АЕС передбачала роздачу живильної води під заглибній дирчатий лист на «гарячу» сторону теплообмінного пучка без обліку теплових навантажень по довжині теплообмінних трубок і виникаючих в обсязі котлової води контурів циркуляції. При розробці ПГВ-1000 передбачалося що, у парогенераторі є три контури руху циркулюючої води.

При дослідженнях встановлено, що значна частина живильної води (до 80 %) виходила разом із циркулюючою водою на ПДЛ. При струмі живильної води по довжині ПГ у зв'язку з нерівномірнім її розподілом були невеликі. Максимальне пароутворення відбувалося поблизу гарячого колектора.

При цьому витрата живильної води в цю зону є недостатньою для компенсації випару. Небаланс витрати пари й живильної води заповнює за рахунок перетікання води із сусідніх зон. Вода, що йде з цих зон, заповнює на холодній половині ПГ в основному надлишковій стосовно паропродуктивності живильною водою, а на гарячій половини значною мірою за рахунок води, викинутої з гарячого зливального каналу ЗДЛ. Частина води рухається під ЗДЛ у ніжній частині каналів між пакетами, до неї додається вода, що вийшла на ЗДЛ через його відчини й зливається в холодний зливальний канал ЗДЛ між закраїной та корпусом ПГ (що бере долю в «поперечній» циркуляції з «гарячої» сторони на «холодну») і частина води із загальної кількості води, що вийшла на ЗДЛ, замикає «поздовжній» контур циркуляції між торцями й серединою ПГ. Поряд із центральною зоною ПГ певний дефіцит живильної води міг маті місце в торцевих зонах водяного обсягу, особливо в гарячому торці. У водяному обсязі ПГ, між колекторами теплоносія була виявлена зона, сольовміст якої значно перевищував параметри продувної води. Продування цієї зони й видалення з її відкладень шламу були малоефективні.

Утворення парі із зон з високим сольовмістом і недосконалою сепарацією приводили до підвищення сольовмісту парі й, як наслідок, порушенню роботі турбіні. Утворення шламу зніжувало теплопередачу від теплоносія до робочого тіла. Видалення відкладень шламу проводилося шляхом спеціально організованих промивань, які подовжували година простою й вимагали значних матеріальних витрат.

Для вирівнювання показників якості води усередині по довжіні ПГ і виключення застійних зон («кишень») підвищеного сольовмісту доцільно змініть систему водоживлення й продування ПГ із організацією «сольового» відсіку. А саме, зменшити кількість колекторів роздачі основної жівільної води в «холодному» торці ПГ і збільшити - в «гарячому» торці; з’єднати лінії продування «кишень» і торців ПГ.

У ПГВ-1000 була прийнята штатна сепараційна схема із ЗДЛ, постаченім закраїной довжиною 730 мм, що частково охоплювала теплообмінній пучок. Як показане віще, сепараційна схема включала жалюзійній сепаратора, що використався на всіх ПГ блоків попередніх поколінь. Однак через збільшене навантаження дзеркала випару вертикальній розмір сепаратора різко зріс. Це погіршило умові гравітаційної сепарації. Промислові випробування ПГВ-1000 головного блоку ВВЕР-1000 виявили нерозрахованій викид у паровій обсяг із зазору між корпусом ПГ і закраіной щита з боку гарячого колектора. У результаті вологість підвищилася вище нормованої. Для усунення викиду крайні виряджай жалюзі з боку гарячого колектора доцільно закриті відбивачем. Це рішення є оперативним тому що воно тільки усуває наслідки викидів але не його заподій. Відомо, що кращим способом запобігання викиду при існуючому компонуванні ЗДЛ є перекриття зазору між ЗДЛ і корпусом на гарячий стороні й виконання переливних вікон у закраіні. Заміна жалюзійного сепаратора стельовим дирчастим листом, що забезпечує збільшення висоти парового обсягу з 750 мм до 1200 мм, поліпшує сепараційні характеристик ПГ і дозволити знизити вологість насиченої парі до нормативного. Парогенератор з модернізованой сепараційной схемою із ЗДЛ і пароприймальним щитом.

Для підвищення надійності роботи ПГ і продовження терміну служби понад нормативній необхідно посилити нормовані показники увідно-хімічного режиму експлуатації відповідно до діючимі в Росії, провести заміну існуючих ЗНД на ЗНД нового покоління, у яких трубні пучки виконані зі сталі 08х14мф не утримуючої міді й цинку.



Поделиться:


Последнее изменение этой страницы: 2016-08-06; просмотров: 362; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.15.25.32 (0.006 с.)