Солнечная система. Законы небесной механики – законы Кеплера. Солнечно-земные связи. Учение А. Л. Чижевского. Ракетно-космические технологии. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Солнечная система. Законы небесной механики – законы Кеплера. Солнечно-земные связи. Учение А. Л. Чижевского. Ракетно-космические технологии.



Солнечная система - это система небесных тел (Солнце, планеты, спутники планет, кометы, метеоритные тела, космическая пыль), двигающихся в области преобладающего гравитационного влияния Солнца. Наблюдаемые размеры Солнечной системы определяются орбитой Плутона - около 40 а.е. Однако сфера, в пределах кот. возможно устойчивое движение небесных тел вокруг Солнца простирается почти до ближайших звезд. В эту группу входят Солнце, 9 больших планет (Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун, Плутон.), десятки спутников планет, тысячи малых планет (астероиды), сотни комет и множество метеоритных тел. К 1979 г. было известно 34 спутника и 2000 астероидов. Все эти тела объединены в одну систему благодаря силе притяжения центрального тела - Солнца. Наиболее близкие к Солнцу планеты - Меркурий и Венера - очень медленно вращаются вокруг оси, с периодом в десятки - сотни земных суток. Медленное вращение этих планет связано с их резонансными взаимодействиями с Солнцем и друг с другом. А относительно малые размеры Марса не позволяют ему удержать плотную атмосферу. В атмосфере Земли насыщенные пары создают облачный слой. Облака Земли входят важнейшим элементом в круговорот воды, происходящий на нашей планете в системе гидросфера - атмосфера - суша. В то время как движение Солнца и Луны всегда происходит в одном направлении - с запада на восток (прямое движение), движение планет гораздо сложнее и временами совершается в обратном направлении (попятное движение). Солнечная система является объектом изучения небесной механики. Небесная механика – раздел астрономии, изучающий движения тел Солнечной системы в гравитационном поле, в том числе движения искусственных небесных тел. В начале XVII века Иоганном Кеплером было открыто 3 основных кинематических закона движения планет: 1. планеты вокруг Солнца движутся по эллиптическим орбитам, в одном из фокусов которого находится Солнце; 2. Радиус вектор планеты за одинаковые промежутки времени описывает равные площади; 3. квадраты периодов обращения планет вокруг Солнца относятся как кубы больших полуосей их орбит. Эти законы являются основой расчета движения планет вокруг солнца, но все ни ориентированы на невозмущенное движение и непосредственно могут быть использованы только для расчетов орбит лишь в первом приближении, т.е. рассматривая лишь поле тяготения Солнца.

Солнечно-земные связи: ультрафиолет, радиоизлучение, рентгеновское излучение, видимый свет. Корпускулярные излучения: солнечный ветер, солнечные космические лучи.

А.Л. Чижевский. Он отмечал, что все самые разнообразные и разнохарактерные явления на Земле — и химические превращения земной коры, и динамика самой планеты и составляющих ее частей (атмосферы, гидросферы и литосферы) — протекают под непосредственным воздействием Солнца. Оно является основным (наряду с космическими излучениями и энергией радиоактивного распада в недрах Земли) источником энергии, причиной всего на Земле — от легкого ветерка и произрастания растений до смерчей и ураганов и умственной деятельности человека. Ракетно-космические технологии: в их основе лежат законы всемирного тяготения, фундаментальные основы космической механики, синтез новых материалов. Ракетно-космические технологии связаны с разработкой ракетной техники, осуществлением космических полетов, проведением различных экспериментов в космосе. Одно из направлений ракетно-космических технологий- создание многоразового космического корабля без ускоряющих двигателей.

Гравитационное взаимодействие тел. Закон всемирного тяготения Ньютона. Космические скорости.

Исаак Ньютон открыл Закон всемирного тяготения, выраженный им в следующей математической формуле: F=G*(m1*m2)/R2. Здесь в числителе произведение m1 и m2 масс взаимно действующих тел, а в знаменателе – квадрат расстояния между ними, G – коэффициент в этой формуле, так называемая гравитационная постоянная (постоянная тяготения). Закон Ньютона не был теоретическим в современном смысле этого слова: он являлся математическим описанием опытного факта. В дальнейшем представления о тяготении были несколько развиты. Были введены представления о напряженности поля тяготения и его потенциале: напряженность грав. поля = отношению силы тяготения, действующей на материальную точку, в величине её массы и представляет собой векторную величину:g= F/m= G*M/R2

Несмотря на победы, на Законе всемирного тяготения лежала мрачная тень с самого момента рождения. Этой тенью было вытекающее из закона мгновенное дальнодействие. Сила тяготения мгновенно, с бесконечной скоростью передавалась на любые расстояния, при этом совершенно неясно, как она преодолевает пространство. Сила передается телу воздействием на него другого тела – это положение было аксиомой для Галилея, на него опираются законы механики самого Ньютона, а вот Закон всемирного тяготения выкидывает прочь эту аксиому. Для тяготения Ньютон отказался искать причину в действиях эфира, хотя делал это в отношении многих других явлений. «Причину же этих свойств силы тяготения я до сих пор не мог вывести из явлений, гипотез же я не измышляю».Сомнения, навеянные гравитационным парадоксом, были развеяны, как представляют современные ученые, с появлением Общей теории относительности. Она была создана А.Эйнштейном в 1916г. на основе специальной ТО, созданной на 11 лет раньше.

Космическая скорость - это минимальная скорость, при которой какое-либо тело в свободном движении с поверхности небесного тела сможет: v1 — стать спутником небесного тела, v2 — преодолеть гравитационное притяжение небесного тела, v3 — покинуть звёздную систему, преодолев притяжение звезды, v4 — покинуть галактику, преодолев притяжение сверхмассивной черной дыры.

Самоорганизация в живой и неживой материи. Синергетика и её применение в технике и технологиях.

Самоорганизация- это природные скачкообразные процессы, приводящие открытую неравновесную систему, достигшую в своем развитии критического состояния, в новое устойчивое состояние с более высоким уровнем сложности и упорядоченности. Критическая точка, в которой более вероятен переход в новое состояние называется точкой бифуркации. Самоорганизация включает закономерное и случайное развитие любых открытых систем: плавающую эволюцию, ход которой закономерен и детерменирован и случайный скачок в точке бифуркации, определяющий следующий закономерный этап развития. Исследование самоорганизации проводят в трех направлениях: синергетика, термодинамика неравновесных процессов и математическая теория катастроф. Синергетика –изучает связи между элементами структуры, которые образуются в открытых системах, благодаря интенсивному обмену веществом и энергией с окр. средой в неравновесных условиях. используют в биологии, астрофизике, промышленности, в психол. исследованиях.

Основные понятия термодинамики. Первое и второе начало термодинамики.

Термодинамика - наука о наиболее общих свойствах макроскопических систем, находящихся в системе термодинамического равновесия, и о процессах перехода между этими состояниями.Термодинамика строится на основе фундаментальных принципов («Начал»), которые являются обобщением многочисленных наблюдений и выполняются независимо от конкретной природы образующих систему тел. Поэтому закономерности в соотношениях между физическими величинами, к которым приводит термодинамика, носит универсальный характер. Обоснование законов термодинамики, их связь с законами движения частиц, из которых построены тела, дается статистической физикой, задачей которой является выражение свойств макроскопических тел, т.е. тел, состоящих из очень большого количества одинаковых частиц (молекул, атомов, электронов и т.д.) через свойства этих частиц и взаимодействие между ними. Первое начало термодинамики утверждает, что если система совершает термодинамический цикл, т.е. в конечном счете возвращается в исходное состояние, то полное количество тепла, сообщенное системе на протяжении цикла, равно совершенной ею работе. Количественная формулировка первого начала термодинамики: количество тепла dQ, сообщенное телу идет на увеличение его внутренней энергии dU и на совершение телом работы dA, т.е. dQ=dU+dA. Второе начало термодинамики утверждает, что теплота не может самопроизвольно перейти от системы с меньшей температурой к системе с большей температурой. С.Карно в 1824 г. показал, что любая тепловая машина должна содержать помимо источника теплоты (нагревателя) и рабочего тела, совершающего термодинамический цикл (например, пара), еще и холодильник, имеющий температуру более низкую, чем температура нагревателя. Обобщение вывода Карно на произвольные термодинамические системы и позволило Р.Клаузиусу сформулировать в 1850 г. указанное Второе начало. В формулировке В.Томсона (1851) Второе начало утверждает, что невозможно произвести механическую работу за счет охлаждения одного теплового резервуара.



Поделиться:


Последнее изменение этой страницы: 2016-08-14; просмотров: 235; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.21.76.0 (0.01 с.)