Упрощенная структурная схема. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Упрощенная структурная схема.



Государственное Образовательное Учреждение

Высшего Профессионального Образования

«Тверской Государственный Технический Университет»

Лабораторная работа №1

«Состав и структура типовой ПЭВМ».

 

 

Тверь-2009

 

 

Содержание:

1 Упрощенная структурная схема. …………………………………………. 3

2 Характеристики и принцип действия. ………………………… 6

2.1 Материнская плата. …………………………………………………. 6

2.2 Центральный процессор. …………………………………………………….. 8

2.3 Основная память. ……………………………………………………. 9

2.4 Накопители на жестких магнитных дисках. ………………………... 10

2.5 Накопители на сменных магнитных дисках. ………………………. 14

2.6 Носители на лазерных дисках. …………………………………….. 15

2.7 Твердотельные накопители. …………………………………………. 16

2.8 Видеокарта. ………………………………………………………….... 21

3 Внешние устройства. ……………………………………………... 22

3.1 Клавиатура. ………………………………………………………….… 23

3.2 Монитор. ………………………………………………………………. 23

3.3 Принтер. ………………………………………………………………. 26

3.4 Сканер. ……………………………………………………………….. 27

4 Характеристики внутренних и внешних линий связи. ……….. 29

 

Характеристики и принцип действия.

В системном блоке находятся все основные узлы компьютера:

• материнская плата;

• электронные схемы (процессор, контроллеры устройств и т.д.);

• блок питания;

• дисководы (накопители).

 

 
 
Рис. 5. Системный блок компьютера.


Материнская плата.

Материнская (системная, главная) плата является центральной частью любого компьютера. На материнской плате размещаются в общем случае центральный процессор, сопроцессор, контроллеры, обеспечивающие связь центрального процессора с периферийными устройствами, оперативная память (RAM), кэш-память, элемент ROM-BIOS (базовой системы ввода/вывода), аккумуляторная батарея, кварцевый генератор тактовой частоты и слоты (разъемы) для подключения других устройств.

Рис. 6. Материнская плата

Общая производительность материнской платы определяется не только тактовой частотой, но и количеством (разрядностью) данных, обрабатываемых в единицу времени центральным процессором, а также разрядностью шины обмена данных между различными устройствами материнской платы.

По функциональному назначению шины делятся на:

• шину данных;

• адресную шину;

• шину управления.

По шине данных происходит обмен данными между центральным процессором, картами расширения и памятью. Разрядность шины данных варьируется от 8-ми битов (сейчас не используется) до 64-х битов в материнских платах современных PC.

По адресной шине происходит адресация ячеек памяти, в которые производится запись данных.

По шине управления или системной шине происходит передача управляющих сигналов между центральным процессором и периферией. На материнской плате системная шина заканчивается слотами для установки других устройств. Адресные шины и шины данных иногда занимают одни и те же физические проводники.

В настоящее время существует несколько стандартов шин: ISA (Industry Sland art Architecture), MCA (MicroChannel Architecture), EISA (Extended ISA), VESA (Video Electronics SlandarlAssollallon), PCI (Peripheral Component Interconnect), USB (Universal Serial BUS).

Архитектура материнских плат постоянно совершенствуется: увеличивается их функциональная насыщенность, повышается производительность. Стало стандартом наличие на материнской плате таких встроенных устройств, как двухканальный E-IDE-контроллер HDD (жёстких дисков), контроллер FDD (гибких (floppy) дисков), усовершенствованного параллельного (LPT) и последовательного (COM) портов, а также последовательного инфракрасного порта.

Порт – многоразрядный вход или выход в устройстве.

 

Центральный процессор.

В общем случае под процессором понимают устройство, производящее набор операций над данными, представленными в цифровой форме (двоичным кодом). Применительно к вычислительной технике под процессором понимают центральное процессорное устройство (CPU), обладающее способностью выбирать, декодировать и выполнять команды а также передавать и принимать информацию от других устройств. Проще говоря, процессор – это электронная схема, выполняющая обработку информации.

Производство современных персональных компьютеров начались тогда, когда процессор был выполнен в виде отдельной микросхемы.

Количество фирм, разрабатывающих и производящих процессоры для IBM-совместимых компьютеров, невелико. В настоящее время известны: Intel, Cyrix, AMD, NexGen, Texas Instrument.

Кроме процессоров, которые составляют основу IBM-совместимых персональных компьютеров, существует целый класс процессоров, составляющих параллельную платформу. Среди самых известных: персональные компьютеры американской фирмы Apple, для которых используются процессоры типа Power PC, имеющие принципиально другую архитектуру; ПК выпускаемые фирмой Motorola и др. Производительность персональных компьютеров на основе процессоров Power PC значительно выше, чем у IBM-совместимых, поэтому, несмотря на значительную разницу в цене, для серьезных профессиональных приложений им отдают предпочтение.

Производительность CPU характеризуется следующими основными параметрами:

1. тактовой частотой;

2. степенью интеграции;

3. внутренней и внешней разрядностью обрабатываемых данных;

4. памятью, к которой может адресоваться CPU.

Тактовая частота указывает, сколько элементарных операций (тактов) микропроцессор выполняет за одну секунду (измеряется в МГц). Тактовая частота определяет быстродействие процессора.

Степень интеграции микросхемы показывает, сколько транзисторов (самый простой элемент любой микросхемы) может поместиться на единице площади. Для процессора Pentium Intel эта величина составляет приблизительно 3 млн. на 3,5 кв.см, у Pentium Pro – 5 млн.

Внутренняя разрядность процессора определяет, какое количество битов он может обрабатывать одновременно при выполнении арифметических операций (в зависимости от поколения процессоров – от 8 до 32 битов). Внешняя разрядность процессора определяет, сколько битов одновременно он может принимать или передавать во внешние устройства (от 16 до 64 и более в современных процессорах).

Для процессора различают внутреннюю (собственную) тактовую частоту процессора (с таким быстродействием могут выполняться внутренние простейшие операции) и внешнюю (определяет скорость передачи данных по внешней шине). Количество адресов ОЗУ, доступное процессору, определяется разрядностью адресной шины.

С бурным развитием мультимедиа приложений перед разработчиками процессоров возникли проблемы увеличения скорости обработки огромных массивов данных, содержащих графическую, звуковую или видео информацию. В результате возникли дополнительно устанавливаемые специальные процессоры DSP.

 

Основная память.

Основная память (ОП) предназначена для хранения и оперативного обмена информацией с прочими блоками машины. ОП содержит два вида запоминающих устройств: постоянное запоминающее устройство (ПЗУ) и оперативное запоминающее устройство (ОЗУ).Q ПЗУ (ROM — Read Only Memory) предназначено для хранения неизменяе-мой (постоянной) программной и справочной информации; позволяет оперативно только считывать информацию, хранящуюся в нем (изменить информацию в ПЗУ нельзя);Q ОЗУ (RAM — Random Access Memory) предназначено для оперативной записи, хранения и считывания информации (программ и данных), непосредственно участвующей в информационно-вычислительном процессе, выполняемом ПК в текущий период времени. Главными достоинствами оперативной памяти являются ее высокое быстродействие и возможность обращения к каждой ячейке памяти отдельно (прямой адресный доступ к ячейке). В качестве недостатка оперативной памяти следует отметить невозможность сохранения информации в ней после выключения питания машины (энергозависимость). Кроме основной памяти на системной плате ПК имеется и энергонезависимая память CMOS RAM (Complementary Metal-Oxide Semiconductor RAM), постоянно питающаяся от своего аккумулятора; в ней хранится информация об аппаратной конфигурации ПК (обо всей аппаратуре, имеющейся в компьютере), которая проверяется при каждом включении системы..

Твердотельные накопители.

За какие-то три года, буквально у нас на глазах флэш-память превратилась из экзотического и дорогостоящего средства хранения данных в один из самых массовых носителей. Твердотельная память этого типа широко используется в портативных плеерах и карманных компьютерах, в фотоаппаратах и миниатюрных накопителях «флэш - драйвах».

Первые серийные образцы работали с низкой скоростью, однако сегодня скорость считывания и записи данных на флэш-память позволяет смотреть хранящийся в миниатюрной микросхеме полноформатный фильм или запускать «тяжелую» операционную систему класса Windows XP. Некоторые крупные производители уже продемонстрировали компьютеры, в которых вместо жесткого диска занимают чипы флэш-памяти, а чересчур оптимистичные наблюдатели и вовсе торопятся полностью похоронить винчестеры, так же, как и флоппи-диски.

Однако у флэш-памяти есть один неприятный недостаток, препятствующий тому, чтобы этот тип носителя заманил все существующие оптические и магнитные накопители, и этот недостаток связан с надежностью и долговечностью. Дело в том, что в силу самой конструкции флэш-память имеет конечное число циклов стирания и записи, достигающее, с чем уже столкнулись владельцы цифровых фотоаппаратов и флэш - драйверов, интенсивно эксплуатирующие эти носители.

По оценкам самих производителей, современная флэш-память, в среднем, способна выдерживать порядка 100000 циклов стирания/записи, хотя в ряде случаев заявляют куда более впечатляющие показатели – до миллиона циклов. Чтобы понять, почему возникает такое ограничение, необходимо немного познакомиться с принципами работы этого типа носителей.

Все флэш-накопители построены на свойстве полевых транзисторов хранить в «плавающем» затворе электрический заряд в течение многих лет. Присутствие или отсутствие заряда в транзисторе рассматривается как логический ноль или логическая единица в двоичной системе счисления. В современных накопителях применяется память типа НЕ- И лил NAND, которая обеспечивает высокую скорость последовательного доступа к данным и отличается невысокой себестоимостью производства в сочетании с высокой ёмкостью. Недостатки NAND-памяти – нивелируются высокой ёмкостью и высокой скоростью последовательного доступа, которая требуется в таких устройствах, как фотокамеры, плееры, съемные накопители.

Для записи и стирания данных в NAND-памяти используется туннелирование электронов методом Фаулера - Нордхейма (FN - туннелирование) через диэлектрик, что не требует высокого напряжения и позволяет сделать ячейки миниатюрнее. Однако именно процесс туннелирования заряда физически изнашивает ячейки, поскольку при помощи электрического тока заставляет электроны проходить сквозь барьеры из диэлектриков и проникать в затвор. Поэтому больше всего изнашивают микросхему процессы стирания и записи – для чтения же через канал просто пропускается ток.

Разумеется, производители памяти принимают меры для увеличения срока службы твердотельных накопителей: в первую очередь, они связаны с обеспечением равномерности процессов записи/стирания по всем ячейкам массива, чтобы какие-то из них не были подвержены большему износу, чем другие. Один из способов – наличие резервного объема памяти, за счет которой при помощи специальных алгоритмов обеспечивается равномерная нагрузка и коррекция возникающих ошибок. Кроме того, выводятся из работы вышедшие из строя ячейки в целях предотвращения потери информации. В служебную область записывается также таблица файлов системы, что предотвращает сбои чтения данных на логическом уровне, возможные, к примеру, при некорректном отключении накопителя или при внезапном отключении электроэнергии.

К сожалению, с увеличением ёмкости микросхем Флэш-памяти снижается и количество циклов стирания/записи, поскольку ячейки становятся все более миниатюрными и для рассеивания оксидных перегородок, изолирующих плавающий затвор, требуется все меньше напряжения. Поэтому с проблемами сталкиваются не только владельцы флэш-накопителей очень маленького, но и очень большого объема.

Практика показывает, что гигабайтная флэш - карточка при интенсивном ежедневном использовании в цифровом фотоаппарате может начать выходить из строя уже через год-два после начала применения. Некоторые фотолюбители прекращают пользоваться такими картами, но хранят на них части своих архивов. Это тоже довольно опрометчивое решение, ведь, несмотря на реализованные в контроллерах карточек системы защиты от стирания, в том числе, аппаратные, при чтении архивов возможна подача повышенного (или пониженного) напряжения на изношенные ячейки, что флэш - карта исчерпала свой ресурс и полностью отказалась от ее использования. Износ флэш-памяти ускоряется лишь в случае неправильного ее использования – постоянного стирания и удаления небольших файлов. Кстати, в этом кроется причина якобы более низкой надежности USB - флэш - драйверов по сравнению с карточками различных форматов. Все дело в том, что, к примеру, в фотоаппаратах или в плеерах ёмкость карты заполняется полностью и постепенно, в то время как у флэш - драйвов нередко более «званый» режим эксплуатации – «записал – стер – записал». При этом в последнем случае, несмотря на все алгоритмы и технологии, повышенному износу подвергаются одни и те же участки микросхем. Совет здесь может быть только один: старайтесь по возможности полностью заполнять флэш - драйвы и не удалять немедленно ставшие ненужными файлы – тем самым вы продлите срок службы накопителя.

Кроме того, обычные карточки флеш - памяти не рассчитаны на использование в качестве постоянного накопителя: не рекомендуется редактировать документы, базы данных непосредственно на «флэшке», работать с операционной системой, записанной в карточку памяти. Помимо преждевременно износа из-за постоянных процессов записи/стирания и постоянного обновления таблицы файлов системы возможен выход накопителя из строя по причине банального перегрева! Разумеется, если вы используете флэш - карту только для чтения, подобных проблем не возникнет. Для описанных случаев больше подходят традиционные механические магнитные внешние накопители различных форм-факторов, изначально рассчитанные на подобные режимы работы.

Конечно, разработчики продолжают совершенствовать конструкцию и технологические процессы для изготовления флэш-памяти, которые позволили бы максимально увеличить число циклов стирания/записи и еще больше нарастить емкость этого носителя, однако проводятся исследования и в области альтернативных твердотельных накопителей.

Например, в Intel уже несколько лет занимаются разработкой твердотельной памяти на аморфных полупроводниках (Ovonic Unified Memory, OUM). В основу работы такой памяти положена технология фазового перехода, аналогичная принципу записи на перезаписываемые диски CD-RW или DVD-RW, при котором состояния регистрирующего слоя изменяется с аморфного на кристаллическое, и одно из этих состояний соответствует логическому нулю, а другое – логической единице. Принципиальное отличие - способ записи: если в оптических носителях применяется нагрев лазера, то в OUM нагрев производится непосредственно электрическим током.

Как заявляют в Intel, в отличие от флэш-памяти, OUM теоретически обладает повышенной надежностью и плотностью хранения данных, а так же повышенным быстродействием – до 100-200 нс. И, самое главное, максимальное число циклов записи/стирания в OUM превышает 10 триллионов – на несколько порядков больше, чем у фдэш - памяти. Несмотря на то, что в Intel заявляют о работах над OUM-памятью уже в течение 5 лет, промышленное производство таких чипов, по оценкам специалистов, начнется не раньше следующего десятилетия.

Еще одна альтернативная флэш-памяти и куда более близкая к серийному производству технология – магниторезистивная память (MRAM), существенно опережающая по быстродействию OUM-память: время доступа этих чипов на сегодня составляет не более 10-15 нс. Благодаря этому память типа MRAM может применяться не только для длительного хранения данных, но и в качестве оперативной памяти.

Чипы MRAM построены на базе элемен6тов магнитной памяти, укрепленных на кремневой подложке, и теоретически поддерживают бесконечное число циклов записи и стирания. Кроме того, важным свойством MRAM – памяти является возможность мгновенного включения, что особенно ценится в мобильных устройствах.

Значение ячейки в этом типе памяти определяется магнитным, а не электрическим зарядом, как в обычной флэш-памяти. Важное достоинство этой разработки – совместимость технологии производства с техпроцессом по выпуску КМОП – чипов, а также возможности использования материалов, применяемых в традиционных магнитных носителях, в частности, ферромагнитных пленок.

Гибридная технология обладает и рядом ограничений: пока подобные микросхемы рассчитаны на слишком «грубый» по сегодняшним меркам 0,18- микронный техпроцесс, что не позволяет добиться сравнимых с флэш-памятью размеров ячеек. Кроме того, себестоимость производства MRAM – память пока непозволите6льно высока.

Разработкой технологии MRAM занимается один из крупнейших мировых производителей памяти, компания Infineon, а так же «голубой гигант» IBM, начавшей исследования в этой области еще в 70-х годах прошлого столетия. Свои средства в развитие технологии MRAM инвестировали также такие компании, как Toshiba,Freescale Semiconductor и NEC, поэтому есть все основания полагать, что этот тип памяти появится на рынке в качестве серийной продукции гораздо раньше OUM.

Пока же все альтернативные технологии хранения данных остаются в проектах, производители продолжают совершенствовать традиционную флэш - технологию, переходят на более тонкие техпроцессы и повышают емкость микросхем. Можно не сомневаться в том, что фирмы, выпускающие флэш-память, намерены использовать весь потенциал этого типа носителей перед переходом на накопители другого типа. Поэтому число устройств, снабженных флэш-памятью, в ближайшее время будет увеличиваться, и рекомендации по использованию такой памяти вряд ли скоро потеряют актуальность.

Твердотельный накопитель (англ. SSD, Solid State Drive, Solid State Disk) — энергонезависимое, перезаписываемое компьютерное запоминающее устройство без движущихся частей. Следует различать твердотельный накопители основанные на использовании энергозависимой (RAM SSD) и энергонезависимой (NAND или Flash SSD) памяти.

Твердотельный накопители основанные на использовании энергонезависимой памяти являются весьма перспективной разработкой. Многие аналитики считают, что уже в ближайшие годы NAND твердотельные накопители займут достаточно большую долю рынка накопителей, отвоевав её у накопителей на жёстких магнитных дисках. По состоянию на сегодняшний день, твердотельные накопители используются в основном в специализированных вычислительных системах и в некоторых моделях ноутбуков (например, ASUS Eee PC).

История развития

Первые накопители подобного типа (на ферритовых сердечниках) были созданы еще для ламповых вычислительных машин. Однако с появлением барабанных, а затем и дисковых накопителей вышли из употребления из-за чрезвычайно высокой стоимости.В 1978 компания StorageTek разработала первый твердотельный накопитель современного типа (основанный на RAM-памяти).

В 1995 компания M-Systems представила первый твердотельный накопитель на flash-памяти.20.06.2008 Южнокорейской компании Mtron Storage Technology удалось создать SSD диск со скоростью записи 240 МБ/с и скоростью чтения 260 МБ/с, который она продемонстрировала на выставке в Сеуле. Объём данного накопителя — 128 ГБ. По заявлению компании выпуск таких устройств начнётся уже в 2009 году

А)RAM SSD

Эти накопители, построенные на использовании энергозависимой памяти (такой же, какая используется в ОЗУ персонального компьютера) характеризуются сверхбыстрыми чтением, записью и поиском информации. Основным их недостатком является чрезвычайно высокая стоимость (от 80 до 800 долларов США за Гигабайт). Используются, в основном, для ускорения работы крупных систем управления базами данных и мощных графических станций. Такие диски, как правило, оснащены аккумуляторами для сохранения данных при потере питания, а более дорогие модели — системами резервного и/или оперативного копирования.

Своеобразной разновидностью таких дисков является RIndMA диск — подключенный быстрым сетевым соединением вторичный ПК с программным RAM-диском. Такой диск стоит в 2-4 раза меньше специализированных, но не рекомендуется для использования в критичных к потере данных приложениях. б)NAND SSD

Накопители, построенные на использовании энергонезависимой памяти (NAND SSD) появились относительно недавно, но в связи с гораздо более низкой стоимостью (3-10 долларов США за Гигабайт) начали уверенное завоевание рынка. До недавнего времени существенно уступали традиционным накопителям в чтении и записи, но компенсировали это (особенно при чтении) высокой скоростью поиска информации (сопоставимой со скоростью RAM-дисков). Сейчас уже выпускаются твердотельные Flash диски со скоростью чтения и записи сопоставимой с традиционными и разработаны модели существенно их превосходящие (ожидаются к выпуску в начале 2009 года). Характеризуются относительно небольшими размерами и низким энергопотреблением. Уже практически полностью завоевали рынок ускорителей баз данных среднего уровня и начинают теснить традиционные диски в мобильных приложениях.

Преимущества по сравнению с жесткими дисками

1. более высокая скорость запуска, отсутствие движущихся частей;

2. быстрый поиск информации;

3. малое время считывания информации;

4. быстрое время записи (только для RAM);

5. низкая потребляемая мощность;

6. отсутствие шума от движущихся частей и охлаждающих вентиляторов;

7. высокая механическая стойкость;

8. широкий диапазон рабочих температур;

9. практически устойчивое время считывания файлов вне зависимости от их расположения или фрагментации;

10. малый размер и вес.

Видеокарта.

Совместно с монитором видеокарта образует видеоподсистему персонального компьютера. Видеокарта не всегда была компонентом ПК. На заре развития персональной вычислительной техники в общей области оперативной памяти существовала небольшая выделенная экранная область памяти, в которую процессор заносил данные, изображении. Специальный контроллер экрана считывал данные о яркости отдельных точек экрана из ячеек памяти этой области и в соответствии с ними управлял разверткой горизонтального луча электронной пушки монитора.

С переходом от черно-белых мониторов к цветным и с увеличением разрешения экрана области видеопамяти стало недостаточно для хранения графических данных, а процессор перестал справляться с построением и обновлением изображения. Тогда и произошло выделение всех операций, связанных с управлением экраном, в отдельный блок, получивший название видеоадаптер. Физически видеоадаптер выполнен в виде отдельной дочерней платы, которая вставляется в один из слотов материнской платы и называется видеокартой. Видеоадаптер взял на себя функции видеоконтроллера, видеопроцессора и видеопамяти.

Внешние устройства.

Внешние устройства (ВУ) ПК — важнейшая составная часть любого вычислительного комплекса, достаточно сказать, что по стоимости ВУ составляют до 80-85% стоимости всего ПК.

ВУ ПК обеспечивают взаимодействие машины с окружающей средой: пользователями, объектами управления и другими компьютерами.

К внешним устройствам относятся:

- внешние запоминающие устройства (ВЗУ) или внешняя память ПК;

- диалоговые средства пользователя;

- устройства ввода информации;

- устройства вывода информации;

- средства связи и телекоммуникаций.

Диалоговые средства пользователя включают в свой состав:

- видеомонитор (видеотерминал, дисплей,) — устройство для отображения вводимой и выводимой из ПК информации;

- устройства речевого ввода-вывода — быстро развивающиеся средства мультимедиа. Это различные микрофонные акустические системы, «звуковые мыши» со сложным программным обеспечением, позволяющим распознавать произносимые человеком буквы и слова, идентифицировать их и кодировать; синтезаторы звука, выполняющие преобразование цифровых кодов в буквы и слова, воспроизводимые через громкоговорители (динамики) или звуковые колонки, подсоединенные к компьютеру.

К устройствам ввода информации относятся:

- клавиатура — устройство для ручного ввода числовой, текстовой и управляющей информации в ПК;

- графические планшеты (дигитайзеры) — устройства для ручного ввода графической информации, изображений путем перемещения по планшету специального указателя (пера); при перемещении пера автоматически выполняется считывание координат его местоположения и ввод этих координат в ПК;

- сканеры (читающие автоматы) — оборудование для автоматического считы-

вания с бумажных и пленочных носителей и ввода в ПК машинописных тек-

стов, графиков, рисунков, чертежей;

- устройства целеуказания (графические манипуляторы), предназначенные

для ввода графической информации на экран дисплея путем управления движением курсора по экрану с последующим кодированием координат курсора и вводом их в ПК (джойстик — рычаг, мышь, трекбол — шар в оправе, световое перо и т. д.);

- сенсорные экраны — для ввода отдельных элементов изображения, программ или команд с экрана дисплея в ПК.

К устройствам вывода информации относятся:

- принтеры — печатающие устройства для регистрации информации на бумажный или пленочный носитель;

- графопостроители (плоттеры) — устройства для вывода графической информации (графиков, чертежей, рисунков) из ПК на бумажный носитель.

Клавиатура.

 
 

Клавиатура есть у каждого компьютера. С его помощью в компьютер вводят информацию или отдают компьютеру команды. Прабабушкой клавиатуры компьютера была пишущая машинка. От нее клавиатура получила в наследство клавиши с буквами и цифрами.Но компьютер умеет делать больше дел, чем пишущая машинка, и потому у его клавиатуры намного больше клавиш. Разные клавиши служат для разных дел. Например, у обычной пишущей машинки нет клавиш для стирания того, что написано, а у клавиатуры - есть. Такая пишущая машинка не может вставить новое слово между двумя другими, а компьютер - может, и для этого тоже есть специальная клавиша.

Когда мы играем в компьютерные игры, то чаще всего используем клавиши со стрелками. Их еще называют «курсорными клавишами». С помощью этих клавиш можно управлять тем, как бегает по экрану герой игры. Очень часто в играх используются клавиши CTRI и ALT. Одной клавишей герой стреляет, а другой - прыгает. Это довольно большие клавиши, к тому же они находятся в самом низу клавиатуры, и потому ими пользоваться удобно.

Самая длинная клавиша - ПРОБЕЛ. Ее можно нажать даже с завязанными глазами. И потому ее тоже очень часто используют в играх.

 

3.2) Монитор.

Видеомонитор.

Монитор — устройство визуального отображения информации (в виде текста, таблиц, рисунков, чертежей и др.).

Подавляющее большинство мониторов сконструированы на базе электронно-лучевой трубки (ЭЛТ), и принцип их работы аналогичен принципу работы телевизора. Мониторы бывают алфавитно-цифровые и графические, монохромные и цветного изображения. Современные компьютеры комплектуются, как правило, цветными графическими мониторами.

Наряду с традиционными ЭЛТ-мониторами все шире используются плоские жидкокристаллические (ЖК) мониторы.

Жидкие кристаллы — это особое состояние некоторых органических веществ, в котором они обладают текучестью и свойством образовывать пространственные структуры, подобные кристаллическим. Жидкие кристаллы могут изменять свою структуру и светооптические свойства под действием электрического напряжения. Меняя с помощью электрического поля ориентацию групп кристаллов и используя введённые в жидкокристаллический раствор вещества, способные излучать свет под воздействием электрического поля, можно создать высококачественные изображения, передающие более 15 миллионов цветовых оттенков.

Большинство ЖК - мониторов использует тонкую плёнку из жидких кристаллов, помещённую между двумя стеклянными пластинами. Заряды передаются через так называемую пассивную матрицу — сетку невидимых нитей, горизонтальных и вертикальных, создавая в месте пересечения нитей точку изображения (несколько размытого из-за того, что заряды проникают в соседние области жидкости).

Активные матрицы вместо нитей используют прозрачный экран из транзисторов и обеспечивают яркое, практически не имеющее искажений изображение. Панель при этом разделена на 308160 (642х480) независимых ячеек, каждая из которых состоит из четырех частей (для трёх основных цветов и одна резервная). Таким образом, экран имеет почти 1,25 млн точек, каждая из которых управляется собственным транзистором.

По компактности такие мониторы не знают себе равных. Они занимают в 2 – 3 раза меньше места, чем мониторы с ЭЛТ и во столько же раз легче; потребляют гораздо меньше электроэнергии и не излучают электромагнитных волн, воздействующих на здоровье людей.

Разновидность монитора — сенсорный экран. Здесь общение с компьютером осуществляется путём прикосновения пальцем к определённому месту чувствительного экрана. Этим выбирается необходимый режим из меню, показанного на экране монитора.

Меню — это выведенный на экран монитора список различных вариантов работы компьютера, по которому можно сделать конкретный выбор.

Сенсорными экранами оборудуют рабочие места операторов и диспетчеров, их используют в информационно -справочных системах и т.д. Количество точек по горизонтали и вертикали называется разрешающей способностью монитора в данном режиме. Например, выражение "разрешающая способность 640´200" означает, что монитор в данном режиме выводит на экран 640 точек по горизонтали и 200 точек по вертикали. Следует заметить, что разрешающая способность не зависит от размера экрана монитора, подобно тому, как и большой, так и маленький телевизоры имеют на экране 625 строк развертки изображения. Современные мониторы обладают разрешающей способностью до 1024´768 или 1248´1024 точек.

Важной характеристикой монитора, определяющей четкость изображения на экране, является размер точки на экране. Чем меньше она, тем выше четкость. Обычно величина точки колеблется от 0,41 до 0,18 мм.

К прочим характеристикам монитора можно отнести: наличие плоского или выпуклого экрана, уровень высокочастотного радиоизлучения, частоту обновления изображения на экране, наличие системы энергосбережения и т.д.

Жидкокристаллические дисплеи (LCD)

Экран подобного LCD (Liquid Crystal Display) состоит из двух стеклянных пластин, между которыми находится масса, содержащая жидкие кристаллы, которые изменяют свои оптические свойства в зависимости от прилагаемого электрического заряда. Жидкие кристаллы сами не светятся, поэтому LCD нуждаются в подсветке или во внешнем освещении. Основным достоинством LCD являются их габариты (экран плоский). К недостаткам можно отнести недостаточное быстродействие при изменении изображения на что особенно заметно при перемещении курсора мыши, а также зависимость резкости и яркости изображения от угла зрения.

3.3) Принтер.

В качестве устройств вывода данных, дополнительных к монитору, используют печатающие устройства (принтеры), позволяющие получать копии документов на бумаге или прозрачном носителе. По принципу действия различают матричные, лазерные, светодиодные и струйные принтеры.

Матричные принтеры. Это простейшие печатающие устройства. Данные выводятся на бумагу в виде оттиска, образующегося при ударе цилиндрических стержней («иголок») через красящую ленту. Качество печати матричных принтеров напрямую зависит от количества иголок в печатающей головке. Наибольшее распространение имеют 9-игольчатые и 24- игольчатые матричные принтеры. Последние позволяют получать оттиски документов, не уступающие по качеству документам, исполненным на пишущей машинке.

Производительность работы матричных принтеров оценивают по количеству печатаемых знаков в секунду (cps-characters per second). Обычными режимами работы у матричных принтеров являются:draft — режим черновой печати, normal — режим обычной печати и режим NLQ (Near Letter Quality), который обеспечивает качество печати, близкое к качеству пишущей машинки.

Лазерные принтеры. Лазерные принтеры обеспечивают высокое качество печати, не уступающее, а во многих случаях и превосходящее полиграфическое. Они отличаются также высокой скоростью печати, которая измеряется в страницах в минуту (ppm — page per minute), Как и в матричных принтерах, итоговое изображение формируется из отдельных точек.

К основным параметрам лазерных принтеров относятся:

ü разрешающая способность, dpi (Dots per inch — точек на дюйм)

ü производительность (страниц в минуту);

ü формат используемой бумаги;

ü объем собственной оперативной памяти.

При выборе лазерного принтера необходимо также учитывать параметр стоимости, оттиска, то есть стоимость расходных материалов для получения одного печатного листа стандартного формата А4. К расходным материалам относится тонер и барабан, который после печати определенного количества оттисков утрачивает свои свойства. В качестве единицы измерения используют цент на страницу (имеются в виду центы США). В настоящее время теоретический предел по этому показателю составляет порядка 1,0-1,5. На практике лазерные принтеры массового применения обеспечивают значения от 2,0 до 6,0.

Основное преимущество лазерных принтеров заключается в возможности получения высококачественных отпечатков. Модели среднего класса обеспечивают разрешение печати до 600 dрi, а профессиональные модели — до 1200 dрi.



Поделиться:


Последнее изменение этой страницы: 2016-08-01; просмотров: 275; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.64.126 (0.107 с.)