Понятие о расчете швов на прочность 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Понятие о расчете швов на прочность



При расчете сварных соединений на прочность в первую очередь необходимо знать площадь поперечного сечения сварного шва. Перемножая толщину сварного шва на его длину, получим площадь поперечного сечения сварного шва. При растяжении допускаемое усилие в сварном соединении определяется по следующей формуле:

Р = σр •S • l.

При сжатии

P = σсж •S • l,

где l — длина шва; S — толщина соединяемых элементов; σр— допускаемое напряжение в сварном шве при растяжении; σсж — допускаемое напряжение в сварном шве при сжатии.

При расчете на прочность нахлесточного соединения применяют следующую расчетную формулу:

P = τср • 0,7K • l,

где P —допускаемое усилие: τcр—допускаемое напряжение наплавленного металла при срезе; К —длина катета; l — длина сварного шва.

Технология дуговой резки электродами

Дуговая резка металлов выполняется металлическим плавящимся электродом, угольным электродом и неплавящимся вольфрамовым электродом в защитной среде аргона. Дуговая резка металлическим плавящимся электродом Сущность способа резки металлическим плавящимся электродом заключается в том, что сила тока подбирается на 30—40% больше, чем при сварке, и металл проплавляют мошной электрической дугой. Электрическую дугу зажигают у начала реза на верхней кромке и в процессе резки перемещают ее вниз вдоль разрезаемой кромки.
Схема резки металлическим электродом

Капли образующегося расплавленного металла выталкивают козырьком покрытия электрода. Козырек одновременно служит и изолятором электрода от замыкания последнего на металл. Основными недостатками этого способа резки являются низкая производительность и плохое качество реза. Режимы ручной дуговой резки стали металлическим плавящимся электродом приведены в табл. 1.

Таблица 1. Режимы резки плавящимся электродом

Марка металла Толщина металла, мм Диаметр электрода, мм Режим резки Марка металла Толщина металла, мм Диаметр электрода, мм Режим резки
ток, А Скорость, м/ч ток, А Скорость, м/ч
Низкоуглеродистая сталь 6 12 25 2,5   12,36 7,2 2,1 Коррозионностойкая сталь 6 12 25 2,5   12 4,38 3
То же 6 12 25     13,8 8,1 3,78 То же 6 12 25     18,72 8,7 4,5
» 6 12 25     15 9,3 4,5 » 6 12 25     18,9 10,2 5,4

 

Иногда применяют автоматическую резку под флюсом легированных сталей, имеющих толщину до 30 мм. Резку выполняют на обычных сварочных автоматах сварочной проволокой Св-08 или Св-08А с применением флюса АН-348 (табл. 2).

Таблица 2. Режимы автоматической резки под флюсом

Толщина разрезаемой легированной стали, мм Диаметр сварочной прволоки, мм Режимы резки
ток, А напряжение дуги, В Скорость, м/ч
      40—42 34,8
      42—44  
      46-50 24,9

 

Дуговая резка угольным электродом

При дуговой резке угольными, графитовыми электродами разделение достигают путем выплавления металла вдоль линии его раздела. Этот способ резки применяют при обработке чугуна, цветных металлов, а также стали в тех случаях, когда не требуется соблюдения точных размеров, а ширина и качество реза не имеют значения. Резку выполняют сверху вниз при соблюдении некоторого угла наклона оплавляемой поверхности к горизонтальной плоскости, что облегчает вытекание металла. Резку ведут на переменном или постоянном токе (табл. 3).

 

 

Таблица 3. Режимы резки угольным электродом

Толщина разрезаемой стали, мм Диаметр электрода, мм Режим резки
Ток, А Скорость, м/ч
       
   
  10,5

 

Дуговая резка неплавящимcя вольфрамовым электродом

Резка в защитной среде аргона применяется весьма ограниченно и только в частных случаях при обработке легированных сталей или цветных металлов. Сущность способа резки заключается в том, что на электроде создают повышенный ток (на 20—30% больше, чем при сварке) и проплавляют насквозь металл.

 

Прорезание канавки в листе воздушно дуговой резкой Выплавка канавок воздушно-дуговой резкой

 

Кислородно-дуговая резка

При кислородно-дуговой резке металл вначале расплавляется электрической дугой, а затем сгорает в поступающей струе кислорода и выдувается. На рисунке приведена схема кислородно-дуговой резки. В настоящее время существует несколько методов кислородно-дуговой резки. За рубежом (в США, Франции и Бельгии), например, нашел применение метод кислородно-дуговой резки при помощи стальных трубчатых электродов.
Схема кислородно-дуговой резки металла

При этом способе резки металл нагревается дугой, возбуждаемой между трубчатым электродом и обрабатываемым изделием. Струя кислорода, поступающая из отверстия трубки, попадая на нагретую поверхность, окисляет металл по всей его толщине.

Электродами служат трубки из низкоуглеродистой или нержавеющей стали при наружном диаметре 5 — 7 мм. Внутренний диаметр трубки может быть 1 — 3,5 мм. Наружную поверхность электрода покрывают специальным покрытием, предохраняющим электрод от замыкания с обрабатываемым металлом при его опирании и перемещении. Кислородно-дуговую резку также выполняют и угольным электродом. Наиболее широкое распространение способ кислородно-дуговой резки нашел при подводных работах.

Схема оборудования поста для кислородно-дуговой резки стальным стержневым электродом: 1 — сварочный трансформатор, 2 — регулятор, 3 — рубильник, 4 — провода, идущие к держателю, 5 — электрододержатель, 6 — электрод, 7 — резак РГД-1-56, 8 — кислородный шланг, 9 — баллон с кислородом, 10 — редуктор

Воздушно-дуговая резка

При воздушно-дуговой резке металл расплавляется дутой, горящей между изделием и угольным электродом, а удаляется струей сжатого воздуха. Воздушно-дуговую резку металлов выполняют постоянным током обратной полярности, так как при дуге прямой полярности металл нагревается сравнительно на широком участке, вследствие чего удаление расплавляемого металла затруднено. Возможно применение и переменного тока. Для воздушно-дуговой резки применяют специальные резаки, которые делятся на резаки с последовательным расположением воздушной струи и резаки с кольцевым расположением воздушной струи. В резаках с последовательным расположением воздушной струи относительно электрода сжатый воздух обтекает электрод только с одной стороны.
Схема воздушно-дуговой резки металла: 1 — разрезаемый металл; 2 — электрод; 3 — воздушно-дуговой резак; 4 — разрезанный металл; 5 — струя воздуха

 

Для воздушно-дуговой резки применяют угольные или графитовые электроды. Графитовые электроды более стойки, чем угольные. По форме электроды бывают круглыми и пластинчатыми. Величину тока при воздушно-дуговой резке определяют по следующей зависимости:

I = K ּd,

где I — ток, А; d — диаметр электрода, мм; K— коэффициент, зависящий от теплофизических свойств материала электрода, равный 46—48 А/мм, для угольных электродов и 60—62 А/мм для графитовых.

Источниками питания для воздушно-дуговой резки служат стандартные сварочные преобразователи постоянного тока или сварочные трансформаторы.

Питание резака сжатым воздухом осуществляют от цеховой сети, имеющей давление 4—6 кгс/см2, а также от передвижных компрессоров. Применение сжатого воздуха при воздушно-дуговой резке давлением выше 6 ат нецелесообразно, так как сильная воздушная струя резко снижает устойчивость горения дуги.

Воздушно-дуговую резку разделяют на поверхностную строжку и разделительную резку.

Поверхностную строжку применяют для разделки дефектных мест в металле и сварных швах, а также для подрубки корня шва и снятия фасок. Фаску можно снимать одновременно на обеих кромках листа. Ширина канавки, образующаяся при поверхностной строжке, на 2—3 мм превышает диаметр электрода.

  Установка воздушно-дуговой резки: 1 — резак; 2 — воздух; 3 — источник питания дуги

Воздушно-дуговую разделительную резку и строжку применяют при обработке нержавеющей стали и цветных металлов. Она имеет ряд преимуществ перед другими способами огневой обработки металлов, так как более проста, а также более дешевая и более производительная.

В табл. 1 приведены режимы разделительной воздушно-дуговой резки угольным электродом, а в табл. 2 приведены данные по разделке корня шва, выполненного встык с К-образной подготовкой кромок.

Таблица 1. Режимы разделительной воздушно-дуговой резки

 

Толщина листа, мм Диаметр электрода, мм Ток, А Скорость резки, м/ч
Низкоуглеродистая сталь Высоколегированная сталь
5 10 12 12 25 6 8 10 12 12 270 — 300 360 — 400 450 — 500 540 — 100 540 — 600 60 — 62 26 — 28 20 — 22 22 — 24 8 —10 63 — 65 30 — 32 22 — 24 24 — 26 10 — 12

 

Таблица 2. Режимы поверхностной воздушно-дуговой резки

 

Толщина свариваемого металла, мм Диаметр электрода, мм Ток, А Ширина разделки корня шва, мм Глубина разделки корня шва, мм
5 — 8     6—7 3—4
6 — 8     7,5—9 4—5
8 — 10     8,5—11 4—5
10 — 11     11,5—13 5—6

 

Плазменно-дуговая резка

Плазма — это газ, состоящий из положительно и отрицательно заряженных частиц в таких пропорциях, что общий заряд равен нулю, т. е. плазма представляет собой смесь электрически нейтральных молекул газа и электрически заряженных частиц, электронов и положительных ионов. Наличие электрически заряженных частиц делает плазму чувствительной к воздействию электрических полей. Плазма вследствие наличия в ней электрически заряженных частиц является электропроводной, и при действии электрических полей в плазме возникают электрические токи. Чем выше степень ионизации, тем выше электропроводность плазмы. Токи в ней отклоняются под действием магнитных полей. Ускорения, сообщаемые заряженным частицам действием электрических и магнитных полей путем соударения передаются нейтральным частицам газа, и весь объем плазмы получает направленное движение, образуя струю, поток или факел горячего газа. Электрические поля, воздействуя на плазму, сообщают энергию заряженным частицам, а через эти частицы и всей плазме. В результате такой передачи энергии температура плазмы может достичь 20 000—30 000º С. Поэтому, чем больше имеется свободных электронов в веществе и чем быстрее они движутся, тем больше проводимость вещества, так как свободно движущиеся электроны переносят электрические заряды. Иначе говоря, плазма —это токопроводящий газ, нагретый до высокой температуры. Сущность плазменной резки состоит в проплавлении металла мощным дуговым разрядом, локализованном на малом участке поверхности разрезаемого металла с последующим удалением расплавленного металла из зоны реза высокоскоростным газовым потоком. Холодный газ, попадающий в горелку, обтекает электрод и в зоне дугового разряда приобретает свойства плазмы, которая затем истекает через отверстие малого диаметра в сопле в виде яркосветящейся струи с большой скоростью и температурой, достигающей 30 000° С и выше. Принципиальная схема плазменной резки приведена на рис. 1.
Рис. 1. Принципиальная схема процесса плазменно-дуговой резки: 1 — вольфрамовый электрод, 2 — медное водоохлождаемое сопло, 3 — наружное сопло, 4 — плазменная струя, 5 — разрезаемый металл, 6 — изоляционная шайба, 7 — балластное сопротивление, 8 — источник питания Рис. 2. Принципиальная схема процесса плазменно-дуговой резки: а — прямого действия, б — косвенного действия
Рис. 3. Конструкция горелки для плазменно-дуговой резки: 1 — магнезитовое кольцо, 2 — сопло, 3 — резиновая прокладка, 4, 6, 8, 10 — изоляционное покрытие, 5 — резиновая трубка, 7 — соединительная гайка, 9 — пробка, 11 — катодный узел, 12 — резиновая прокладка, 13 — корпус сопла, 14 — соединительная гайка, 15 — наружное сопло

В зависимости от применяемой электрической схемы плазменная резка металлов может выполняться независимой и зависимой дугами. Схема плазменной резки дугой прямого действия приведена на рис. 2, а, а дугой косвенного действия на рис. 2, б. Конструкция плазменной горелки приведена на рис. 3. В таблице приводятся ориентировочные режимы резки.

 

Параметры резки Разрезаемый материал
Ст. 3 толщина 18 мм Сталь 1Х18Н9Т толщина 20 мм
Ток, А Напряжение дуги, В Диаметр сопла, мм Диаметр электрода, мм Рассттояние сопла до изделия, мм Расход аргона, л/мин Расход воздуха, м3/ч Скорость резки, м/ч 300 65 3,5 4 5 10 5 60 340 75 3,5 4 5 10 5 40

 

Плазмообразующий газ — система, преобразующая подводимую электрическую энергию в тепловую, передаваемая разрезаемому металлу. Поэтому желательно, чтобы газ имел высокий потенциал ионизации и находился в молекулярном состоянии. Такими газами являются аргон, азот, водород, гелий, воздух и их смеси.

 



Поделиться:


Читайте также:




Последнее изменение этой страницы: 2016-08-01; просмотров: 332; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 52.14.84.29 (0.015 с.)