Задача построение сети неперекрывающихся треугольников 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Задача построение сети неперекрывающихся треугольников



является одной из базовых в вычислительной геометрии и широко используется в машинной графике и геоинформационных системах для моделирования поверхности и решения пространственных задач.

Впервые задача построения сети неперекрывающихся треугольников была поставлена в 1934 году в работе советского математика Б. Н. Делоне, который сформулировал и соответствующие условия.

В математике задачей построения триангуляции по заданным точкам называют задачу их попарного соединения непересекающимися отрезками так, чтобы образовалась сеть треугольников.

Основными ее элементами являются:

узлы (вершины треугольников), ребра (стороны) и грани (собственно треугольники).

Построенная триангуляция может быть:

• выпуклой (если таковым будет минимальный многоугольник, охватывающий область моделирования),

• невыпуклой (если триангуляция не является выпуклой) и оптимальной (если сумма длин всех ребер минимальна).

 

Сеть таких треугольников называется триангуляцией Делоне, если она удовлетворяет некоторым условиям:

• внутрь окружности, описанной вокруг любого треугольника, не попадает ни одна из исходных точек;

• триангуляция является выпуклой и удовлетворяет сформулированному выше условию Делоне;

• сумма минимальных углов всех треугольников максимальна из всех возможных триангуляций;

• сумма радиусов окружностей, описанных около треугольников, минимальна среди всех возможных триангуляций.

Первый из названных выше критериев (внутрь окружности, описанной вокруг любого треугольника, не попадает ни одна из исходных точек) построения триангуляции Делоне, называемый круговым, является одним из основных и проверяется для любой пары треугольников с общими гранями. Математическая интерпретация критерия вытекает из рисунка.

 

Многие алгоритмы построения триангуляции Делоне используют следующую теорему:

Теорема 1. Триангуляцию Делоне можно получить из любой другой триангуляции по той же системе точек, последовательно перестраивая пары соседних треугольников ABC и BCD, не удовлетворяющих условию Делоне, в пары треугольников ABD и ACD.

Такую операцию перестроения часто называют флипом.

На основе определения триангуляции Делоне и соответствующих условий на практике обычно используют несколько способов проверки:

– проверка через уравнение описанной окружности;

– проверка с заранее вычисленной описанной окружностью;

– проверка суммы противолежащих углов;

– модифицированная проверка суммы противолежащих углов.

 

Триангуляция Делоне.

В настоящее время существует множество алгоритмов построения триангуляции Делоне. Многие из известных алгоритмов используют определение триангуляции Делоне как вторичный признак триангуляции. Поэтому в таких алгоритмах отмечаются следующие слабости:

– алгоритмы используют постоянно вычисляемые тригонометрические функции, что резко замедляет процесс;

– при исследовании взаимоотношения точек и базового отрезка возникают очень малые углы, и при использовании тригонометрических функций постоянно появляется опасность исчезновения порядка и деления на «0» в связи с ограниченной точностью представлений данных в компьютере.

Наиболее известные программные продукты строят триангуляцию Делоне, используя теорему о пустом шаре как основной, первичный принцип построения треугольников. Алгоритм выглядит так:

– все множество точек делится на треугольники, т.е. создаются комбинации из трех точек;

– для каждой комбинации находится описанная окружность и координаты ее центра;

– если внутри окружности текущей комбинации не находится ни одной точки из оставшихся то эта комбинация есть треугольник – часть триангуляции Делоне.

К достоинствам этого алгоритма можно отнести:

– отсутствие использования тригонометрических функций, что не замедляет процесс построений;

– непосредственное построение триангуляции Делоне, без каких – либо предварительных построений;

– простота всех вычислений и преобразований;

– в итоге триангуляционная сетка представлена множеством треугольников, а не отдельных линий.

узлы, ребра, грани и структурные линии, а слева – структурныЗадача построения модели поверхности с учетом структурных линий называется триангуляцией Делоне с ограничениями. Фрагмент триангуляции Делоне с включенными в нее дополнительными элементами приведен на рисунке, где справа показаны линии местности (береговые линии, бровки оврага и др.) и точки с известными отметками.

Располагая пикеты на характерных элементах рельефа (например, водоразделах и тальвегах), мы игнорируем более мелкие элементы в промежутках. При построении горизонталей1 по таким ребрам треугольников возникает ошибка, которая зависит от величины неровности рельефа и угла наклона местности. Например, средняя погрешность съемки рельефа, не должна превышать 1/3 сечения рельефа при углах наклона поверхности от 2 до 10 градусов. Можно рассчитать, что при сечении рельефа 0,5 м предельная величина пропущенной неровности (то есть отклонения поверхности земли от прямой, проходящей через соседние пикеты) не должна превышать (0,5/3)*cos10°=0,16 м.

Для точности определения объема перемещаемого грунта важна также площадь, занимаемая не учитываемой деталью рельефа. Допустим, в квадрате 20х20 м между двумя парами пикетов имеется цилиндрическая выпуклость с максимальной высотой 0,15 м. Нетрудно подсчитать, что ее неучет при представлении данной поверхности только двумя треугольниками приведет к ошибке приблизительно в 40 м3. Не так уж много, но для участка в 1 га, расположенного на холме или верхней (как правило, выпуклой) части склона, получится уже 40*25=1000 м3 лишнего грунта. Если же брать пикеты в два раза чаще (то есть через 10 м), ошибка уменьшится вчетверо и составит 250 м3 на гектар. Этот фактор можно учесть заранее, поскольку положительные формы равнинного рельефа обычно имеют выпуклую форму, а отрицательные – вогнутую. Если на подлежащий съемке участок имеются приближенные данные о рельефе, то радиус кривизны поверхности и необходимую густоту пикетов легко рассчитать по величинам заложения горизонталей или отдельным высотным отметкам.

 

 

Полиномиальные методы

Полиномиальные способы предполагают представление модели­руемой поверхности полиномом второй - пятой степени вида

Для отыскания неизвестных коэффициентов полинома для каждой опорной точки составляют одно уравнение поправок вида

где свободный член (Z – ZГ) представляет собой уклонение вычислен­ной по формуле (5.7) отметки (Z) с приближенными значениям ко­эффициентов полинома от исходной (ZГ). Полученную систему реша­ют последовательными приближениями, в каждом из которых неизве­стные находят методом наименьших квадратов, под условием [pv ]= min. Найденные таким образом коэффициенты а0...аi уравнений (5.7) используют для интерполяции высот точек, расположенных в области моделирования.

Кусочно-полиномиальные способы предполагают деление области моделирования на участки, подбор для каждого участка своего ло­кального полинома вида (5.7) и последующую связь локальных поли­номов с помощью переходных уравнений. Во всех случаях возникают переопределенные системы, которые решаются под условием миниму­ма суммы квадратов расхождений высот точек реальной и аппроксими­рующей поверхностей.

Сходные по характеру решения используют способы, основанные на применении рядов Фурье (разложений по сферическим гармони­кам), различного рода сплайнов (кубических, бикубических, на много­образиях и др.) и т. п. [3].

На русский язык термин "spline" переводится как "гибкая рейка" или "плавная кривая" [5].

Сплайны используются для сглаживания линий при отображении гладких поверхностей (поле и т.д.).

 



Поделиться:


Последнее изменение этой страницы: 2016-07-16; просмотров: 695; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.129.211.87 (0.007 с.)