Кольца Ньютона в отражённом свете. Радиус светлых колец. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Кольца Ньютона в отражённом свете. Радиус светлых колец.



Ко́льца Нью́тона — кольцеобразные интерференционные максимумы и минимумы, появляющиеся вокруг точки касания слегка изогнутой выпуклой линзы и плоскопараллельной пластины при прохождении света сквозь линзу и пластину. Интерференционная картина в виде концентрических колец (колец Ньютона) возникает между поверхностями одна из которых плоская, а другая имеет большой радиус кривизны (например, стеклянная пластинка и плосковыпуклая линза). Исаак Ньютон исследовав их в монохроматическом и белом свете обнаружил, что радиус колец возрастает с увеличением длины волны (от фиолетового к красному).

 

 

Радиус светлых колец Ньютона в отраженном свете:

 

, где k=1, 2, 3 …… — номер кольца; R — радиус кривизны.

Вывод формулы смотреть в лекциях.

Кольца Ньютона в отражённом свете. Радиус тёмных колец.

Ко́льца Нью́тона — кольцеобразные интерференционные максимумы и минимумы, появляющиеся вокруг точки касания слегка изогнутой выпуклой линзы и плоскопараллельной пластины при прохождении света сквозь линзу и пластину. Интерференционная картина в виде концентрических колец (колец Ньютона) возникает между поверхностями одна из которых плоская, а другая имеет большой радиус кривизны (например, стеклянная пластинка и плосковыпуклая линза). Исаак Ньютон исследовав их в монохроматическом и белом свете обнаружил, что радиус колец возрастает с увеличением длины волны (от фиолетового к красному).

Радиус темных колец Ньютона в отраженном свете:

, где k=1, 2, 3 …….

Вывод формулы смотреть в лекциях.

Дифракция света. Принцип Гюйгенса-Френеля. Метод зон Френеля.

Дифракцией света называется явление отклонения света от прямолинейного направления распространения при прохождении вблизи препятствий. Как показывает опыт, свет при определенных условиях может заходить в область геометрической тени. Если на пути параллельного светового пучка расположено круглое препятствие (круглый диск, шарик или круглое отверстие в непрозрачном экране), то на экране, расположенном на достаточно большом расстоянии от препятствия, появляется дифракционная картина – система чередующихся светлых и темных колец. Если препятствие имеет линейный характер (щель, нить, край экрана), то на экране возникает система параллельных дифракционных полос

Принцип Гюйгенса–Френеля:

Пусть поверхность S представляет собой положение волнового фронта в некоторый момент. В теории волн под волновым фронтом понимают поверхность, во всех точках которой колебания происходят с одним и тем же значением фазы (синфазно). В частности, волновые фронта плоской волны – это семейство параллельных плоскостей, перпендикулярных направлению распространения волны. Волновые фронта сферической волны, испускаемой точечным источником – это семейство концентрических сфер.

Для того чтобы определить колебания в некоторой точке P, вызванное волной, по Френелю нужно сначала определить колебания, вызываемые в этой точке отдельными вторичными волнами, приходящими в нее от всех элементов поверхности S (ΔS1, ΔS2 и т. д.), и затем сложить эти колебания с учетом их амплитуд и фаз. При этом следует учитывать только те элементы волновой поверхности S, которые не загораживаются каким-либо препятствием.


 

Принцип Гюйгенса–Френеля. Δ S 1 и Δ S 2 – элементы волнового фронта, и – нормали

 

 

 

Для облегчения расчета Френель предложил разбить волновую поверхность падающей волны в месте расположения препятствия на кольцевые зоны (зоны Френеля) по следующему правилу: расстояние от границ соседних зон до точки P должны отличается на половину длины волны, т. е.

Если смотреть на волновую поверхность из точки P, то границы зон Френеля будут представлять собой концентрические окружности.

Границы зон Френеля в плоскости отверстия

Легко найти радиусы ρm зон Френеля:

 

   

 

Дифракция на щели.

При прохождении света через узкую щель за нею получаются дифракционные полосы. Кроме того, происходит интерференция отдельных лучей. В зависимости от наклона лучей к оси симметрии системы получаются неодинаковые разности хода — чередование светлых и темных полос

 
 

 



Дифракционная решётка.

Дифракционная решётка — оптический прибор, работающий по принципу дифракции света, представляет собой совокупность большого числа регулярно расположенных штрихов (щелей, выступов), нанесённых на некоторую поверхность Расстояние, через которое повторяются штрихи на решётке, называют периодом дифракционной решётки. Обозначают буквой d.

Если известно число штрихов (), приходящихся на 1 мм решётки, то период решётки находят по формуле: мм.

Условия интерференционных максимумов дифракционной решётки, наблюдаемых под определёнными углами, имеют вид:

— период решётки,

— угол максимума данного цвета,

— порядок максимума, то есть порядковый номер максимума, отсчитанный от центра картинки,

— длина волны.

Если же свет падает на решётку под углом , то:



Поделиться:


Последнее изменение этой страницы: 2016-08-01; просмотров: 4921; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.119.160.85 (0.007 с.)