Принципы Джона фон Нейман. Поколения эвм 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Принципы Джона фон Нейман. Поколения эвм



ОРГАНИЗАЦИЯ ЭВМ

Конспект лекций

 

 

Челябинск

ЮУрГУ

ПРИНЦИПЫ ДЖОНА ФОН НЕЙМАН. ПОКОЛЕНИЯ ЭВМ

Принципы Джона фон Нейман

В основу построения подавляющего большинства ЭВМ положены следующие общие принципы, сформулированные в 1945 году американским ученым венгерского происхождения ДЖОНОМ фон НЕЙМАНОМ.

1) Принцип двоичного кодирования.

Согласно этому принципу, вся информация, поступающая в ЭВМ, кодируется с помощью двоичных сигналов.

2) Принцип программного управления.

Программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определенной последовательности.

3) Принцип однородности памяти.

Программы и данные хранятся в одной и той же памяти. Поэтому ЭВМ не различает, что хранится в данной ячейке памяти – число, текст или команда. Над командами можно выполнять такие же действия, как и над данными.

4) Принцип адресности.

Структурно основная память состоит из пронумерованных ячеек, причем процессору в произвольный момент времени доступна любая ячейка.

Отсюда следует возможность давать имена областям памяти, так, чтобы к запомненным в них значениям можно было бы впоследствии обращаться или изменять их в процессе выполнения программы с использованием присвоенных имен.

Согласно фон Нейману, ЭВМ состоит из следующих основных блоков:

– устройства ввода/вывода информации;

– память компьютера;

– процессор, состоящий из устройства управления (УУ) и арифметико-логического устройства (АЛУ).

Машины, построенные на этих принципах, называются ФОН-НЕЙМАНОВСКИМИ

Таким образом, компьютер можно представить себе как процессор, многоуровневую систему памяти, систему внешних и внутренних связующих коммуникаций и периферийные устройства.

К функциям памяти относятся:

– приём информации из других устройств;

– запоминание информации;

– выдача информации по запросу в другие устройства машины.

Функции процессора:

– обработка данных по заданной программе путем выполнения арифметических и логических операций;

– программное управление работой устройств компьютера.

Та часть процессора, которая выполняет команды, называется арифметико-логическим устройством (АЛУ), а другая его часть, выполняющая функции управления устройствами, называется устройством управления (УУ). Обычно эти два устройства выделяются условно, конструктивно они не разделены.

В составе процессора имеется ряд специализированных дополнительных ячеек памяти, называемых регистрами.

Регистр выполняет функцию кратковременного хранения числа или команды. Над содержимым некоторых регистров специальные электронные схемы могут выполнять некоторые манипуляции. Например, вырезать отдельные части команды для последующего их использования или выполнять определенные арифметические операции над числами.

Основным элементом регистра является электронная схема, называемая триггером, которая способна хранить одну двоичную цифру (разряд).

Регистр представляет собой совокупность триггеров, связанных друг с другом определённым образом общей системой управления.

Существует несколько типов регистров (рис. 1.1), отличающихся видом выполняемых операций:.

– сумматор – регистр АЛУ, участвующий в выполнении каждой операции;

– счетчик команд – регистр УУ, содержимое которого соответствует адресу очередной выполняемой команды; служит для автоматической выборки программы из последовательных ячеек памяти;

– регистр команд – регистр УУ для хранения кода команды на период времени, необходимый для ее выполнения. Часть его разрядов используется для хранения кода операции, остальные – для хранения кодов адресов операндов.

Рисунок 1.1

Схема сопряжения регистров процессора

 

АРХИТЕКТУРА ТЕХНИЧЕСКИХ СРЕДСТВ

Рассмотрим физическую организацию персонального компьютера фирмы IBM, его периферию и принципы сопряжения отдельных компонентов.

Микропроцессор

Является центральным узлом персонального компьютера. Процессор обладает способностью выполнять команды, составляющие компьютерную программу. Персональные компьютеры строятся на базе микропроцессоров, выполняемых в настоящее время на одном кристалле или «чипе».

Микропроцессор, использованный в IBM/PC, был разработан и создан фирмой «Интел». Принципиальное отличие IBM/PC от персональных компьютеров предыдущего поколения заключается в использовании 16-разрядного микропроцессора. До появления IBM/PC наиболее популярные персональные компьютеры строились на базе 8-разрядных микропроцессоров.

Различия между 8- и 16-разрядными микропроцессорами состоит в том, что 8-разрядные процессоры могут манипулировать данными, состоящими из 8 бит, а 16-разрядные процессоры могут работать и 16-разрядными данными. Основное преимущество 16-разрядных процессоров перед 8-разрядными заключается в значительном повышении их быстродействия, мощности и удобства их набора команд. Кроме того, существенно увеличивается объем адресуемой памяти. Большинство 8-разрядных процессоров может использовать не более 64К памяти, что значительно уменьшает возможности эффективного использования персональных компьютеров. Процессоры 8088 и 8086, используемые в IBM/PC, позволяют адресовать 1024К.

Функциональное назначение

Сигналы синхронизации работы системы обеспечиваются генератором 8284А. Эти сигналы используются всеми элементами компьютера и задают длительность операций. С тактовым генератором связан таймер 8255А-5, использующийся для поддержки интерфейса накопителя на кассетной магнитной ленте и встроенного динамика.

Функционирование компьютерной системы основано на использовании прерываний. Для организации работы системы прерываний используется микросхема 8259А. Когда данные передаются внутри компьютерной системы, они проходят по общему каналу, к которому имеют доступ все компоненты системы. Этот путь получил название шины данных.

Концепция шины представляет собой один из наиболее совершенных методов унификации при разработке компьютеров. Вместо того чтобы пытаться соединять все элементы компьютерной системы между собой специальными соединениями, разработчики компьютеров ограничили пересылку данных одной общей шиной. Данные пересылаются по шине в сопровождении специальных сигналов, обозначающих их назначение. Эта идея чрезвычайно упростила конструкцию компьютеров и существенно увеличила ее гибкость. Чтобы добавить новый компонент, не требуется выполнять множество различных соединений, достаточно присоединить его к шине. Чтобы упорядочить передачу информации по шине используется контроллер шины.

X-терминалы

X-терминалы представляют собой комбинацию бездисковых рабочих станций и стандартных терминалов. Бездисковые рабочие станции часто применялись в качестве дорогих дисплеев и в этом случае не полностью использовали локальную вычислительную мощь. Совсем недавно, как только стали доступными очень мощные графические рабочие станции, появилась тенденция применения «подчиненных» X-терминалов, которые используют рабочую станцию в качестве локального сервера.

Как правило, стоимость X-терминалов составляет около половины стоимости сравнимой по конфигурации бездисковой машины и примерно четверть стоимости полностью оснащенной рабочей станции.

Типовой X-терминал (рис.3.1) включает следующие элементы:

– экран высокого разрешения – обычно размером от 14 до 21 дюйма по диагонали;

– микропроцессор на базе Motorola 68xxx или RISC-процессор типа Intel i960, MIPS R3000 или AMD29000;

– отдельный графический сопроцессор в дополнение к основному процессору, поддерживающий двухпроцессорную архитектуру, которая обеспечивает более быстрое рисование на экране и прокручивание экрана;

– базовые системные программы, на которых работает система X-Windows и выполняются сетевые протоколы;

– программное обеспечение сервера X11.

– переменный объем локальной памяти (от 2 до 8 Мбайт) для дисплея, сетевого интерфейса, поддерживающего сетевые протоколы передачи данных.

– порты для подключения клавиатуры и мыши.

Рисунок 3.1

Схема работы X-терминала

X-терминалы отличаются от ПК и рабочих станций не только тем, что не выполняет функции обычной локальной обработки. Работа X-терминалов зависит от главной (хост) системы, к которой они подключены посредством сети. Для того чтобы X-терминал мог работать, пользователи должны инсталлировать программное обеспечение многооконного сервера X11 на главном процессоре, выполняющем прикладную задачу (наиболее известная версия X11 Release 5).

Минимальный объем требуемой для работы памяти X-терминала составляет 1 Мбайт. В зависимости от функциональных возможностей изделия оперативная память может расширяться до 32 Мбайт и более.

Оснащенный стандартной системой X-Windows, X-терминал может отображать на одном и том же экране множество приложений одновременно. Каждое приложение может выполняться в своем окне, а пользователь может изменять размеры окон, их месторасположение и манипулировать ими в любом месте экрана.

Серверы

Прикладные многопользовательские системы используют технологию «клиент-сервер» и распределенную обработку данных. В случае «клиент-сервер» часть работы выполняет сервер, а часть пользовательский компьютер (в общем случае клиентская и пользовательская части могут работать и на одном компьютере). Существует несколько типов серверов, ориентированных на разные применения: файл-сервер, сервер базы данных, принт-сервер, вычислительный сервер, сервер приложений. Таким образом, тип сервера определяется видом ресурса, которым он владеет (файловая система, база данных, принтеры, процессоры или прикладные пакеты программ).

С другой стороны, существует классификация серверов, определяющаяся масштабом сети, в которой они используются: сервер рабочей группы, сервер отдела или сервер масштаба предприятия (корпоративный сервер). Эта классификация весьма условна. Например, размер группы может меняться в диапазоне от нескольких человек до нескольких сотен человек, а сервер отдела обслуживать от 20 до 150 пользователей. Очевидно в зависимости от числа пользователей и характера решаемых ими задач требования к составу оборудования и программного обеспечения сервера, к его надежности и производительности сильно варьируются.

Файловые серверы небольших рабочих групп (не более 20-30 человек) проще всего реализуются на платформе персональных компьютеров и программном обеспечении Novell NetWare. Файл-сервер, в данном случае, выполняет роль центрального хранилища данных. Серверы прикладных систем и высокопроизводительные машины для среды «клиент-сервер» значительно отличаются требованиями к аппаратным и программным средствам.

Скорость процессора для серверов с интенсивным вводом/выводом некритична. Они должны быть оснащены достаточно мощными блоками питания для возможности установки дополнительных плат расширения и дисковых накопителей. Желательно применение устройства бесперебойного питания. Оперативная память обычно имеет объем не менее 128 Мбайт, что позволит операционной системе использовать большие дисковые кэши и увеличить производительность сервера. При наличии одного сегмента сети и 10-20 рабочих станций пиковая пропускная способность сервера ограничивается максимальной пропускной способностью сети. В этом случае замена процессоров или дисковых подсистем более мощными не увеличивают производительность, так как узким местом является сама сеть. Поэтому важно использовать хорошую плату сетевого интерфейса.

Современные серверы характеризуются:

– наличием двух или более центральных процессоров;

– многоуровневой шинной архитектурой, в которой высокоскоростная системная шина связывает между собой несколько процессоров и оперативную память, а также множество стандартных шин ввода/вывода, размещенных в том же корпусе;

– поддержкой технологии дисковых массивов RAID;

– поддержкой режима симметричной многопроцессорной обработки, которая позволяет распределять задания по нескольким центральным процессорам или режима асимметричной многопроцессорной обработки, которая допускает выделение процессоров для выполнения конкретных задач.

Мейнфреймы

Мейнфреймы – до сегодняшнего дня остаются наиболее мощными вычислительными системами общего назначения, обеспечивающими непрерывный круглосуточный режим эксплуатации. В архитектурном плане мейнфреймы представляют собой многопроцессорные системы, содержащие один или несколько центральных и периферийных процессоров с общей памятью, связанных между собой высокоскоростными магистралями передачи данных. При этом основная вычислительная нагрузка ложится на центральные процессоры, а периферийные обеспечивают работу с множеством периферийных устройств.

Главным недостатком мейнфреймов в настоящее время остается относительно низкое соотношение производительность/стоимость.

Кластерные архитектуры

Двумя основными проблемами построения вычислительных систем для критически важных приложений, связанных с обработкой транзакций, управлением базами данных и обслуживанием телекоммуникаций, являются обеспечение высокой производительности и продолжительного функционирования систем. Наиболее эффективный способ достижения заданного уровня производительности – применение параллельных масштабируемых архитектур. Задача обеспечения продолжительного функционирования системы имеет три составляющих: надежность, готовность и удобство обслуживания. Все эти три составляющих предполагают, в первую очередь, борьбу с неисправностями системы, порождаемыми отказами и сбоями в ее работе. Эта борьба ведется по всем трем направлениям, которые взаимосвязаны и применяются совместно.

Повышение надежности основано на принципе предотвращения неисправностей путем снижения интенсивности отказов и сбоев за счет применения электронных схем и компонентов с высокой и сверхвысокой степенью интеграции, снижения уровня помех, облегченных режимов работы схем, обеспечение тепловых режимов их работы, а также за счет совершенствования методов сборки аппаратуры. Повышение уровня готовности предполагает подавление в определенных пределах влияния отказов и сбоев на работу системы с помощью средств контроля и коррекции ошибок, а также средств автоматического восстановления вычислительного процесса после проявления неисправности, включая аппаратурную и программную избыточность, на основе которой реализуются различные варианты отказоустойчивых архитектур. Повышение готовности есть способ борьбы за снижение времени простоя системы. Основные эксплуатационные характеристики системы существенно зависят от удобства ее обслуживания, в частности от ремонтопригодности, контролепригодности и т.д.

Существует несколько типов систем высокой готовности, отличающиеся своими функциональными возможностями и стоимостью. Стоимость систем высокой готовности на много превышает стоимость обычных систем. Вероятно, поэтому наибольшее распространение в мире получили кластерные системы, благодаря тому, что они обеспечивают достаточно высокий уровень готовности систем при относительно низких затратах.

Кластеризация – это реализация объединения машин, представляющихся единым целым для операционной системы, системного программного обеспечения, прикладных программ и пользователей.

Машины, кластеризованные вместе таким способом, могут при отказе одного процессора очень быстро перераспределить работу на другие процессоры внутри кластера. Это наиболее важная задача многих поставщиков систем высокой готовности.

Компьютеры в кластере могут разделять доступ к общим ленточным и дисковым накопителям. Все компьютеры в кластере могут обращаться к отдельным файлам данных как к локальным.

Если происходит отказ одного из компьютеров, задания его пользователей автоматически могут быть перенесены на другой компьютер кластера. Если в системе имеется несколько контроллеров внешних накопителей и один из них отказывает, другие контроллеры автоматически подхватывают его работу (высокая готовность).

Высокая пропускная способность. Ряд прикладных систем могут пользоваться возможностью параллельного выполнения заданий на нескольких компьютерах кластера.

Удобство обслуживания системы. Общие базы данных могут обслуживаться с единственного места. Прикладные программы могут инсталлироваться только однажды на общих дисках кластера и разделяться между всеми компьютерами кластера.

Расширяемость. Увеличение вычислительной мощности кластера достигается подключением к нему дополнительных компьютеров. Дополнительные накопители на магнитных дисках и магнитных лентах становятся доступными для всех компьютеров, входящих в кластер.

Работа любой кластерной системы определяется двумя главными компонентами: высокоскоростным механизмом связи процессоров между собой и системным программным обеспечением, которое обеспечивает клиентам прозрачный доступ к системному сервису. В настоящее время широкое распространение получила также технология параллельных баз данных. Эта технология позволяет множеству процессоров разделять доступ к единственной базе данных. Распределение заданий по множеству процессорных ресурсов и параллельное их выполнение позволяет достичь более высокого уровня пропускной способности транзакций, поддерживать большее число одновременно работающих пользователей и ускорить выполнение сложных запросов. Существуют три различных типа архитектуры, которые поддерживают параллельные базы данных.

1) Симметричная многопроцессорная архитектура с общей памятью (Shared Memory SMP Architecture). Эта архитектура (рис. 3.3.) поддерживает единую базу данных, работающую на многопроцессорном сервере под управлением одной операционной системы. Увеличение производительности таких систем обеспечивается наращиванием числа процессоров, устройств оперативной и внешней памяти.

Рисунок 3.3.

Симметричная многопроцессорная архитектура с общей памятью

 

2) Архитектура с общими (разделяемыми) дисками. Эта архитектура поддерживает единую базу данных при работе с несколькими компьютерами, объединенными в кластер (обычно такие компьютеры называются узлами кластера), каждый из которых работает под управлением своей копии операционной системы. В таких системах все узлы разделяют доступ к общим дискам, на которых собственно и располагается единая база данных. Производительность таких систем может увеличиваться как путем наращивания числа процессоров и объемов оперативной памяти в каждом узле кластера, так и посредством увеличения количества самих узлов.

3) Архитектура без разделения ресурсов. Как и в архитектуре с общими дисками, в этой архитектуре поддерживается единый образ базы данных при работе с несколькими компьютерами, работающими под управлением своих копий операционной системы. Однако в этой архитектуре каждый узел системы имеет собственную оперативную память и собственные диски, которые не разделяются между отдельными узлами системы. Практически в таких системах разделяется только общий коммуникационный канал между узлами системы. Производительность таких систем может увеличиваться путем добавления процессоров, объемов оперативной и внешней (дисковой) памяти в каждом узле, а также путем наращивания количества таких узлов.

Таким образом, среда для работы параллельной базы данных обладает двумя важными свойствами: высокой готовностью и высокой производительностью. В случае кластерной организации несколько компьютеров или узлов кластера работают с единой базой данных. В случае отказа одного из таких узлов, оставшиеся узлы могут взять на себя задания, выполнявшиеся на отказавшем узле, не останавливая общий процесс работы с базой данных. Поскольку логически в каждом узле системы имеется образ базы данных, доступ к базе данных будет обеспечиваться до тех пор, пока в системе имеется, по крайней мере, один исправный узел. Производительность системы легко масштабируется, т.е. добавление дополнительных процессоров, объемов оперативной и дисковой памяти, и новых узлов в системе может выполняться в любое время, когда это действительно требуется.

Параллельные базы данных находят широкое применение в системах обработки транзакций в режиме on-line, системах поддержки принятия решений и часто используются при работе с критически важными для работы предприятий и организаций приложениями, которые эксплуатируются по 24 часа в сутки.

СИСТЕМА ПРЕРЫВАНИЙ

Общие сведения

Прерывание – это инициируемый определенным образом процесс, временно переключающий микропроцессор на выполнение другой программы с последующим возобновлением выполнения прерванной программы.

Механизм прерываний позволяет обеспечить наиболее эффективное управление не только внешними устройствами, но и программами. Некоторые операционные системы используют механизм прерываний не только для обслуживания внешних устройств, но и для предоставления своих услуг. Так, хорошо известная и до сих пор достаточно широко используемая операционная система MS-DOS взаимодействует с системными и прикладными программами преимущественно через систему прерываний.

Прерывания могут быть внешними и внутренними.

Внешние прерывания вызываются внешними по отношению к микропроцессору событиями. На них формируются внешние по отношению к микропроцессору сигналы, которые извещают микропроцессор о том, что некоторое внешнее устройство просит уделить ему внимание.

Внутренние прерывания возникают внутри микропроцессора во время вычислительного процесса. К их возбуждению приводит одна из двух причин:

– ненормальное внутреннее состояние микропроцессора, возникшее при обработке некоторой команды программы;

– обработка машинной команды «int xx». Такой тип прерываний называется программным. Это – планируемые прерывания, так как с их помощью программист обращается в нужное для него время за обслуживанием своих запросов либо к операционной системе, либо к BIOS, либо к собственным программам обработки прерываний.

Обработка прерываний.

Микропроцессоры Intel имеют два режима работы – реальный и защищенный. В этих режимах обработка прерываний осуществляется принципиально разными методами.

Рассмотрим обработку прерываний в реальном режиме.

В общем случае система прерываний – это совокупность программных и аппаратных средств, реализующих механизм прерываний.

К аппаратным средствам системы прерываний относятся

– выводы микропроцессора

INTR – вывод для входного сигнала внешнего прерывания. На этот вход поступает выходной сигнал от микросхемы контроллера прерываний 8259А;

INTA – вывод микропроцессора для выходного сигнала подтверждения получения сигнала прерывания микропроцессором. Этот выходной сигнал поступает на одноименный вход INTA микросхемы контроллера прерываний 8259А;

NMI – вывод микропроцессора для входного сигнала немаскируемого прерывания;

– микросхема программируемого контроллера прерываний 8259А. Она предназначена для фиксирования сигналов прерываний от восьми различных внешних устройств: таймера, клавиатуры, магнитных дисков и т. д. Обычно используют две последовательно соединенные микросхемы 8259A. В результате такого соединения количество возможных источников внешних прерываний возрастает до 15.

К программным средствам системы прерываний реального режима относятся:

– таблица векторов прерываний, в которой в определенном формате, зависящем от режима работы микропроцессора, содержатся указатели на процедуры обработки соответствующих прерываний;

– следующие флаги в регистре флагов flags\eflags:

IF (Interrupt Flag) – флаг прерывания. Предназначен для так называемого маскирования (запрещения) аппаратных прерываний, то есть прерываний по входу INTR. На обработку прерываний остальных типов флаг IF влияния не оказывает. Если IF=1, микропроцессор обрабатывает внешние прерывания, если IF = 0, микропроцессор игнорирует сигналы на входе INTR;

TF (Trace Flag) - флаг трассировки. Единичное состояние флага TF переводит микропроцессор в режим покомандной работы. В режиме покомандной работы после выполнения каждой машинной команды в микропроцессоре генерируется внутреннее прерывание с номером 1, и далее следуют действия в соответствии с алгоритмом обработки данного прерывания;

– машинные команды микропроцессора: int, into, iret, cli, sti ().

Микросхема контроллера прерываний выполняет следующие функции:

– фиксирование запросов на обработку прерывания от восьми источников, формирование единого запроса на прерывание и подача его на вход INTR микропроцессора;

– формирование номера вектора прерывания и выдача его на шину данных;

– организация приоритетной обработки прерываний;

– запрещение (маскирование) прерываний с определенными номерами.

Важным свойством данного контроллера является возможность его программирования, что позволяет достаточно гибко изменять алгоритмы обработки аппаратных прерываний.

В процессе загрузки компьютера и в дальнейшем во время работы контроллер прерываний настраивается на работу в одном из четырех режимов.

1) Режим вложенных прерываний. В этом режиме каждому входу (уровню) irq0...irq7 присваивается фиксированное значение приоритета, причем уровень irq0 имеет наивысший приоритет, а irq7 - наименьший. Приоритетность прерываний определяет их право на прерывание обработки менее приоритетного прерывания более приоритетным (при условии, конечно, что IF=1).

2 ) Режим циклической обработки прерываний. В этом режиме значения приоритетов уровней прерываний также линейно упорядочены, но уже не фиксированным образом, а изменяются после обработки очередного прерывания по следующему принципу: значению приоритета последнего обслуженного прерывания присваивается наименьшее значение. Следующий по порядку уровень прерывания получает наивысшее значение, и поэтому при одновременном приходе запросов на прерывания от нескольких источников преимущество будет иметь этот уровень.

3) Режим адресуемых приоритетов. Программист или система самостоятельно могут назначить уровень прерывания с наивысшим приоритетом.

4) Режим опроса. Этот режим запрещает контроллеру автоматически прерывать работу микропроцессора при появлении прерывания от некоторого внешнего устройства. Для того чтобы микропроцессор смог узнать о наличии того или иного запроса на прерывание, он должен сам обратиться к контроллеру прерываний, проанализировать его и далее действовать по своему алгоритму. Согласно этому подходу, инициатором обработки прерывания становится не само прерывание, как при векторной дисциплине, а микропроцессор, причем в определяемые им (точнее, операционной системой, выполняемой на нем) моменты времени.

ИЕРАРХИЯ ПАМЯТИ

В основе реализации иерархии памяти современных компьютеров лежат два принципа: принцип локальности обращений и соотношение стоимость/производительность.

Принцип локальности обращений говорит о том, что большинство программ к счастью не выполняют обращений ко всем своим командам и данным равновероятно, а оказывают предпочтение некоторой части своего адресного пространства.

Иерархия памяти современных компьютеров строится на нескольких уровнях, причем более высокий уровень меньше по объему, быстрее и имеет большую стоимость в пересчете на байт, чем более низкий уровень. Уровни иерархии взаимосвязаны: все данные на одном уровне могут быть также найдены на более низком уровне, и все данные на этом более низком уровне могут быть найдены на следующем нижележащем уровне и так далее, пока мы не достигнем основания иерархии.

Иерархия памяти обычно состоит из многих уровней, но в каждый момент времени мы имеем дело только с двумя близлежащими уровнями. Минимальная единица информации, которая может либо присутствовать, либо отсутствовать в двухуровневой иерархии, называется блоком. Размер блока может быть либо фиксированным, либо переменным. Если этот размер зафиксирован, то объем памяти является кратным размеру блока.

Успешное или неуспешное обращение к более высокому уровню называются соответственно попаданием или промахом.

Попадание – есть обращение к объекту в памяти, который найден на более высоком уровне, в то время как промах означает, что он не найден на этом уровне.

Поскольку повышение производительности является главной причиной появления иерархии памяти, частота попаданий и промахов является важной характеристикой. Время обращения при попадании есть время обращения к более высокому уровню иерархии, которое включает в себя, в частности, и время, необходимое для определения того, является ли обращение попаданием или промахом. Потери на промах есть время для замещения блока в более высоком уровне на блок из более низкого уровня плюс время для пересылки этого блока в требуемое устройство (обычно в процессор). Потери на промах далее включают в себя две компоненты: время доступа – время обращения к первому слову блока при промахе, и время пересылки – дополнительное время для пересылки оставшихся слов блока. Время доступа связано с задержкой памяти более низкого уровня, в то время как время пересылки связано с полосой пропускания канала между устройствами памяти двух смежных уровней.

Чтобы описать некоторый уровень иерархии памяти надо ответить на следующие четыре вопроса.

1) Где может размещаться блок на верхнем уровне иерархии? (размещение блока).

2) Как найти блок, когда он находится на верхнем уровне? (идентификация блока).

3) Какой блок должен быть замещен в случае промаха? (замещение блоков).

4) Что происходит во время записи? (стратегия записи).

Организация кэш-памяти

Cегодня кэш-память имеется практически в любом компьютере. Как правило, конструктивно современная кэш-память неотделима от процессора

Общие положения

Основная память представляет собой следующий уровень иерархии памяти. Основная память удовлетворяет запросы кэш-памяти и служит в качестве интерфейса ввода/вывода, поскольку является местом назначения для ввода и источником для вывода. Для оценки производительности основной памяти используются два основных параметра: задержка и полоса пропускания. Традиционно задержка основной памяти имеет отношение к кэш-памяти, а полоса пропускания или пропускная способность относится к вводу/выводу. В связи с ростом популярности кэш-памяти второго уровня и увеличением размеров блоков у такой кэш-памяти, полоса пропускания основной памяти становится важной также и для кэш-памяти.

Задержка памяти традиционно оценивается двумя параметрами: временем доступа (access time) и длительностью цикла памяти (cycle time).

Время доступа представляет собой промежуток времени между выдачей запроса на чтение и моментом поступления запрошенного слова из памяти.

Длительность цикла памяти определяется минимальным временем между двумя обращениями к памяти.

Полупроводниковая оперативная память в настоящее время делится на статическое ОЗУ (SRAM) и динамическое ОЗУ (DRAM). (Random Access Memory – запоминающее устройство с произвольной выборкой).

Микросхемы (DRAM) характеризуются большей емкостью и меньшей стоимостью, но требуют схем регенерации и имеют значительно большее время доступа.

Триггером называют элемент на транзисторах, который может находиться в одном из двух устойчивых состояний (0 и 1), а по внешнему сигналу он способен менять состояние. Триггер может служить ячейкой памяти, хранящей один бит информации.

Память, основанная на триггерах, называется статической (SRAM).

Принцип устройства DRAM следующий: система металл-диэлектрик-полупроводник способна работать как конденсатор, т.е. способна некоторое время держать на себе электрический заряд. Обозначив заряженное состояние как 1 и незаряженное как 0, получим ячейку памяти емкостью 1 бит. Поскольку заряд на конденсаторе рассеивается через некоторый промежуток времени, то его необходимо периодически подзаряжать (регенерировать), считывая и вновь записывая в него данные. Из-за этого и возникло понятие «динамическая» для этого вида памяти.

Статическое ОЗУ – дорогой и неэкономичный вид ОЗУ, поэтому его используют в основном для кэш-памяти и в регистрах микропроцессорах.

Развитие оперативной памяти

Динамическое ОЗУ со времени своего появления прошло несколько стадий роста. Вначале микросхемы динамического ОЗУ производились в DIP-корпусах. Затем их сменили модули, состоящие из нескольких микросхем: SIPP, SIMM и, наконец, DIMM и RIMM. Рассмотрим эти разновидности поподробнее.

1) DIP- корпус – это самая древняя реализация DRAM. Обычно это маленький черный корпус из пластмассы, по обеим сторонам которого располагаются металлические контакты.

Микросхемы (по-другому, чипы) динамического ОЗУ устанавливались так называемыми банками. Банки бывают на 64, 256 Кбайт, 1 и 4 Мбайт. Каждый банк состоит из девяти отдельных одинаковых чипов. Из них восемь чипов предназначены для хранения информации, а девятый чип служит для проверки четности остальных восьми микросхем этого банка. Чипы памяти имели емкость 64 Кбит, 256 Кбит, 1 и 4 Мбит.

Памятью с DIP-корпусами комплектовались персональные компьютеры с микропроцессорами i8086/88, i80286 и, частично, i80386SX/DX. Установка и замена этого вида памяти была сложной задачей. Поэтому уже в компьютерах с процессором i80386DX эти микросхемы стали заменять памяти SIPP и SIMM.

2) SIPP-модули представляют собой маленькие платы с несколькими напаянными микросхемами DRAM.

SIPP является сокращением слов Single Inline Package. SIPP-модули соединяются с системной платой с помощью 30 контактных штырьков, которые вставляются в соответствующую панель системной платы. Модули SIPP имели определенные вырезы, которые не позволяли вставить их в разъемы неправильным образом.

3) SIMM-модули.

SIMM расшифровывается как Single Inline Memory Module (Модуль памяти с однорядным расположением выводов.) Модули SIMM могут иметь объем 256 Кбайт, 1, 2, 4, 8, 16 и 32 Мбайт. Соединение SIMM-модулей с системной платой осуществляется с помощью колодок. Модуль вставляется в пластмассовую колодку под углом 70 градусов, а потом зажимается пластмассовым держателем. При этом плата встает вертикально. Специальные вырезы на модуле памяти не позволяют поставить их неправильным образом.

Модули SIMM для соединения с системной платой имеют позолоченные полоски (пины).

SIMM-модули в своем развитии прошли два этапа. Первыми представителями SIMM-модулей были 30-пиновые SIMM. Их максимальная частота работы – 29 МГц. Стандартным же временем доступа к памяти считалось 70 нс. Эти модули уже с трудом работали на компьютерах с микропроцессорами i80486DX2, и были вытеснены сначала 72-пиновыми FPM (Fast Page Mode) DRAM, а затем EDO (Extended Data Output) RAM.

SIMM EDO RAM имеют только 72 пина и могут работать на частоте до 50 МГц. Этими модулями памяти оснащались компьютеры с процессорами Intel 80486DX2/DX4, Intel Pentium, Pentium Pro и Pentium MMX, а также AMD 80586 и K5.



Поделиться:


Последнее изменение этой страницы: 2016-06-06; просмотров: 5154; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.86.134 (0.084 с.)