Адренергические медиаторы и рецепторные структуры 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Адренергические медиаторы и рецепторные структуры



 

До сих пор речь шла о веществах, которые прямо или косвенно связаны с функцией одного из химических передатчиков нервного возбуждения - ацетилхолина. Иной молекулярный механизм лежит в основе действия ядов и антидотов, вмешивающихся в обмен адреналина и норадреналина, - медиаторов второго типа, получивших общее название катехоламинов. Биохимическим предшественником этих веществ является жизненно важная аминокислота тирозин:

 

 

В настоящее время как медиатор рассматривается также дофамин, который, как видно из приведенной схемы, является промежуточным продуктом биосинтеза норадреналина и адреналина. Физиологическая роль этих передатчиков нервного импульса проявляется в центральных и периферических структурах, которые принято называть адренергическими в отличие от описанных ранее холинергических, связанных с ацетилхолином. Установлено, что катехоламины обладают выраженными свойствами регуляторов ряда процессов жизнедеятельности. Поэтому они, прежде всего адреналин, нередко рассматриваются как гормональные вещества.

 

 

рис. 9. Предполагаемая схема фиксации адреналина в активных центрах адренорецептивных структур (Комиссаров, 1959)

Не касаясь многих сложных и до конца еще не изученных сторон биохимической организации адренергических систем, можно полагать, что выброс норадреналина (точнее, его смеси с адреналином, именуемой симпатином) в синаптическую щель и последующее его взаимодействие с рецепторньми структурами (адренорецепторами) являются непременным условием нормального функционирования соответствующих отделов нервной системы. Адренорецепторы, с которыми взаимодействуют катехоламины, неоднородны. Это доказывается тем, что характер ответных реакций разных органов даже на один и тот же катехоламин может быть неодинаковым, а один и тот же орган может разнонаправленно реагировать на введение различных катехоламинов. В связи с этим по предложению американского ученого Алквиста (1948 г.) принято рассматривать 2 типа адренорецепторов: α- и β-адренорецепторы. Возбуждение α-адренорецепторов связывается с сужением кровеносных сосудов, увеличением тонуса гладких мышц и усилением функции большинства соответствующих органов и структур, а стимуляция β-адренорецепторов, наоборот, угнетает деятельность этих органов, расширяет кровеносные сосуды, повышает частоту и силу сокращений сердца.

 

 

рис. 10. Основные структурные элементы и схема функционирования адренер гического синапса (Голяков, Фишзон-Рысс, 1978). 1 - гранулы депонирования норадреналина (НА); 2 - синаптические пузырьки; з - обратный захват НА; 4 - сипаптическая щель; КОМТ - кате-хол-орто-метилтрансфераза; МАО - моноаминоксидаза; ДОФА - диокси-фенилалашш; Тир - тирозин; α-АР и β-AP - α- и β-адренорецепторы

Согласно современным взглядам, адренорецепторы представляют собою металлопротеиды, имеющие двучленное строение с атомом железа или марганца в роли связующего звена, что позволяет одновременно фиксироваться на них 2 молекулам медиатора. По крайней мере такая структура с достаточным основанием приписывается α-адренорецепторам (рис. 9).

Мгновенная инактивация медиаторов в адренергических синапсах осуществляется большим числом ферментов,[88]из которых главное значение имеют моноаминоксидаза и катехоламин-орто-метилтрансфераза (КОМТ) (рис. 10). Данные ферменты катализируют окислительное дезаминирование катехоламинов. Биохимиками более изучена структура и функция моноаминоксидазы, которая в отличие от холинэстеразы является сложным металло-протеидом, имеющим в составе своей молекулы активную каталитическую часть особой химической структуры, именуемую в биохимии простетической, или коферментной и включающую пиридоксальфосфатную группировку и атомы меди. В свою очередь пиридоксальфосфат состоит из пиридоксина (витамина В6) и фосфорной кислоты. Согласно принятым данным,[89]именно пиридоксин и медь являются важнейшими компонентами активных каталитических центров моноаминоксидазы и ряда других ферментов, получивших общее название пиридоксалевых.

 

Серотонин

 

Результаты экспериментальных и клинических исследований позволяют теперь с достаточной определенностью говорить о существовании такого медиатора нервного возбуждения, биохимическая роль которого связана в основном с высшей нервной деятельностью. Речь идет о серотонине (5-окситриптамине), который считается химическим передатчиком нервных импульсов в центральных синапсах главным образом стволовой части головного мозга. Источником образования серотонина в организме является одна из жизненно важных аминокислот - триптофан, который под действием специфического фермента (оксидазы) превращается в 5-окситриптофан, а последний декарбоксилируется (теряет СО2) и превращается в серотонин:

 

 

Понятно, что после выполнения медиаторной функции (т. е. после воздействия на соответствующие рецепторы) молекулы серотонина, подобно другим медиаторам, мгновенно инактивируются. Это происходит вследствие дезаминирования и окисления под влиянием фермента моноаминоксидазы. Следовательно, катехоламины и серотонин связывает общность путей биотрансформации. В этой связи небезынтересно сопоставить химическую структуру адреналина и серотонина. Если допустить, что этиламиновая группа адреналина изогнута, то по своей конфигурации его молекула представляет собою разорванный индольный гетероцикл:[90]

 

 

Основываясь на такой точке зрения, можно предположить, что биоструктуры, с которыми взаимодействует серотонин, близки по своему строению с адренорецепторами. Подобие химического строения серотонина с веществами, близкими к адреналину, имеет значение для понимания молекулярного механизма действия некоторых психотомиметических ядов.

 

Гамма-аминомасляная кислота

 

В последние 25 лет все большее внимание биохимиков, фармакологов, токсикологов привлекает еще один медиатор передачи импульсов в нервной системе - гамма-аминомасляная кислота (ГАМК). Этот медиатор является нормальным продуктом обмена веществ у млекопитающих и образуется из глутаминовой кислоты при действии пиридоксалевого фермента глутаматдекарбоксилазы:

 

 

Теперь считается доказанным,[91]что ГАМК тормозит развитие и проведение импульсов в центральной нервной системе. Следовательно, можно полагать, что по своему биохимическому действию ГАМК есть антагонист тех эндогенных и экзогенных веществ, которые вызывают или стимулируют в нервной системе возбудительный процесс. Освобождающаяся при раздражении тормозных нервных структур (проводящих путей, нервов, клеточных скоплений) ГАМК преодолевает синаптическую щель и вступает во взаимодействие с рецепторами постсинаптической мембраны (ГАМК-рецепторами). По И. А. Сытинскому, ГАМК-рецептор - субклеточная структура (фосфолипидно-белковьй комплекс) постсинаптической мембраны с активными участками, облегчающими сорбцию медиатора на его поверхности. Не исключается, что ГАМК-рецепторы, подобно адренорецепторам, имеют двучленное строение и, следовательно, могут активироваться 2 молекулами медиатора. Медкаторное действие ГАМК в центральной нервной системе можно также объяснить сходством ее химического и пространственного строения с ацетилхолином:

 

 

Поэтому учитывается возможность конкурентного антагонизма этих медиаторов в их действии на холинергические рецепторные структуры: взаимодействие с ГАМК защищает холинорецептор от стимулирующего влияния ацетилхолина.

Как и другие медиаторы, ГАМК разрушается в постсинаптических структурах с помощью специфического катализатора. Им является фермент ГАМК-трансаминаза. Важно при этом иметь в виду, что при инактивации ГАМК вновь образуется ее предшественник - глутаминовая кислота. С другой стороны, закономерно, что блокада трансаминазы приводит к избытку ГАМК в синапсах.

 

 



Поделиться:


Последнее изменение этой страницы: 2016-04-26; просмотров: 358; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.135.183.1 (0.009 с.)