Теоремы сложений и умножения вероятностей 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Теоремы сложений и умножения вероятностей



Событие А называется частным случаем события В, если при наступлении А наступает и В. То, что А является частным случаем В, записываем.

События А и В называются равными, если каждое из них является частным случаем другого. Равенство событий А и В записываем А = В.

Суммой событий А и В называется событие А + В, которое наступает тогда и только тогда, когда наступает хотя бы одно из событий: А или В.

Теорема о сложении вероятностей. Вероятность появления одного из двух несовместных событий равна сумме вероятностей этих событий.

 

Заметим, что сформулированная теорема справедлива для любого числа несовместных событий:

.

Если случайные события образуют полную группу несовместных событий, то имеет место равенство

.

Произведением событий А и В называется событие АВ, которое наступает тогда и только тогда, когда наступают оба события: А и В одновременно. Случайные события А и B называются совместными, если при данном испытании могут произойти оба эти события.

Теорема о сложении вероятностей 2. Вероятность суммы совместных событий вычисляется по формуле

.

События событий А и В называются независимыми, если появление одного из них не меняет вероятности появления другого. Событие А называется зависимым от события В, если вероятность события А меняется в зависимости от того, произошло событие В или нет.

Теорема об умножении вероятностей. Вероятность произведения независимых событий А и В вычисляется по формуле:

.

Вероятность произведения зависимых событий вычисляется по формуле условной вероятности (см. следующий раздел).

Пример. В первом ящике 1 белый и 5 черных шаров, во втором 8 белых и 4 черных шара. Из каждого ящика вынули по шару. Найти вероятность того, что один из вынутых шаров белый, а другой – черный.

Решение. Обозначим события: А – вынули белый шар из первого ящика,
;

- вынули черный шар из первого ящика,
;

В – белый шар из второго ящика,
;

- черный шар из второго ящика,
.

Нам нужно, чтобы произошло одно из событий или. По теореме об умножении вероятностей
,.
Тогда искомая вероятность по теореме сложения будет
.

Пример. Вероятность попадания в цель у первого стрелка 0,8, у второго – 0,9. Стрелки делают по выстрелу. Найти вероятность: а) двойного попадания; б) двойного промаха, в) хотя бы одного попадания; г) одного попадания.

Решение.

Пусть А – попадание первого стрелка,;

В – попадание второго стрелка,.

Тогда - промах первого,;

- промах второго,.

Найдем нужные вероятности.

а) АВ – двойное попадание,

б) – двойной промах,.

в) А + В – хотя бы одно попадание,

.

г) – одно попадание,

.

Пример. Студент разыскивает нужную ему формулу в трех справочниках. Вероятности того, что формула содержится в первом, втором и третьем справочниках равны 0,6; 0,7 и 0,8. Найти вероятности того, что формула содержится 1) только в одном справочнике; 2) только в двух справочниках; 3) во всех трех справочниках.

Решение.

А – формула содержится в первом справочнике;

В – формула содержится во втором справочнике;

С – формула содержится в третьем справочнике.

Воспользуемся теоремами сложения и умножения вероятностей.

1.

2..

3.

Пусть в результате испытания могут появиться n событий, независимых в совокупности, либо некоторые из них (в частности, только одно или ни одного), причем вероятности появления каждого из событий известны. Как найти вероятность того, что наступит хотя бы одно из этих событий? Например, если в результате испытания могут появиться три события, то появление хотя бы одного из этих событий означает наступление либо одного, либо двух, либо трех событий. Ответ на поставленный вопрос дает следующая теорема.

Теорема. Вероятность появления хотя бы одного из событий, независимых в совокупности, равна разности между единицей и произведением вероятностей противоположных событий

 

Если события имеют одинаковую вероятность, то формула принимает простой вид:

.

Пример. Вероятности попадания в цель при стрельбе из трех орудий таковы: p 1 = 0,8; p 2 = 0,7; p 3 = 0,9. Найти вероятность хотя бы одного попадания (событие А) при одном залпе из всех орудий.

Решение. Вероятность попадания в цель каждым из орудий не зависит от результатов стрельбы из других орудий, поэтому рассматриваемые события (попадание первого орудия), (попадание второго орудия) и (попадание третьего орудия) независимы в совокупности.

Вероятности событий, противоположных событиям, и (т. е. вероятности промахов), соответственно равны:

,,

Искомая вероятность.

Пример. В типографии имеется 4 плоскопечатных машины. Для каждой машины вероятность того, что она работает в данный момент, равна 0,9. Найти вероятность того, что в данный момент работает хотя бы одна машина (событие А).

Решение. События "машина работает" и "машина не работает" (в данный момент) — противоположные, поэтому сумма их вероятностей равна единице:

Отсюда вероятность того, что машина в данный момент не работает, равна

Искомая вероятность

Так как полученная вероятность весьма близка к единице, то на основании следствия из принципа практической невозможности маловероятных событий мы вправе заключить, что в данный момент работает хотя бы одна из машин.

 

Формула полной вероятности

Теорема 1 (формула полной вероятности). Пусть события образуют полную группу несовместных событий. Будем эти события называть гипотезами. Тогда вероятность любого события того же поля событий равна:

 

Доказательство. Так как события образуют полную группу событий, то событие можно представить в виде: (это означает, что событие может произойти А только вместе с одним из событий). Так как события несовместны то:

 

Пример 1. Детали поступают на конвейер с трех станков. Первый станок производит 25% всех деталей, второй 35% и третий 40% деталей. Первый станок выпускает 1% бракованных деталей, второй 3%, третий 5%. Определить вероятность того, что случайно выбранная с конвейера деталь окажется бракованной.

Решение. Введем обозначения событий: - деталь окажется бракованной; события - деталь изготовлена соответственно первым, вторым или третьим производителем. По условию задачи:

,,;

,,.

По формуле полной вероятности находим:

 

 

Формула Байеса

Теорема 2 (формула Байеса ). Пусть событие, которое могло произойти вместе с одним из событий, образующих полную группу несовместных событий, наступило. Тогда условная вероятность того, что осуществилась гипотеза равна:

 

Поскольку данная формула позволяет вычислить апостериорные вероятности по априорным, то ее также называют формулой переоценки гипотез.

Доказательство. По определению условной вероятности:

.

Пример 3. В условиях примера 1 определить вероятность того, что взятая деталь была изготовлена на первом станке, если она оказалась бракованной.

Решение. Требуется переоценить вероятность гипотезы. По формуле Байеса имеем:

.

Вероятность стала меньше, поскольку если деталь оказалась бракованной, то более вероятно, что она произведена вторым, либо третьим станком.

Пример 4. В корзине находится один шар - с равной вероятностью белый или черный. В корзину опускается белый шар, и после перемешивания извлекается один шар. Он оказался белым. Какова вероятность, что в корзине остался белый шар.

Решение. Пусть гипотеза - в корзине исходно находится белый шар, гипотеза - в корзине находится черный шар. Так как с равной вероятностью в корзине может находиться как белый, так и черный шар, то:. После того, как в корзину был опущен белый шар, вероятность вынуть белый шар (событие) в предположении гипотезы есть:. Аналогично, вероятность вынуть белый шар в предположении гипотезы:. Следовательно по формуле полной вероятности:

.

Тогда вероятность, что в корзине остался белый шар (то есть верна гипотеза):

.

Пример 5. Два стрелка стреляют по мишени, делая по одному выстрелу. Вероятность попадания для первого стрелка 0,8, для второго – 0,4. После стрельбы в мишени обнаружена только одна пробоина. Найти вероятность того, что попал первый стрелок.

Решение. Некоторая сложность в данной задаче состоит в том, что мы уже решали аналогичную прямую задачу, не привлекая при этом формулу полной вероятности.

Введем обозначения: - попал в цель только один стрелок, первый стрелок попал в цель, -второй стрелок попал в цель. Тогда:. То есть, можно считать, что событие может наступить в результате осуществления двух гипотез: - попал в цель только первый стрелок, - попал в цель только второй стрелок. Имеем:,,,.

..

 

 



Поделиться:


Последнее изменение этой страницы: 2016-04-23; просмотров: 295; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.189.2.122 (0.013 с.)