Влияние примесей на свойства железоуглеродистых сплавов. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Влияние примесей на свойства железоуглеродистых сплавов.



Углерод (C) является основным элементом, придающим стали повышенную прочность и определенный уровень пластичности. Этот элемент повышает также упругость, износостойкость и выносливость при переменных нагрузках. Углерод в железоуглеродистом сплаве находится главным образом в связанном состоянии в виде цементита. В свободном состоянии в виде графита он содержится в сером чугуне. С увеличением содержания углерода возрастают твердость, прочность и уменьшается пластичность. При содержании более 0.8% углерода твердость возрастает, а прочность уменьшается, так как сплав становится более хрупким.

Марганец (Mn) - при содержании в стали (0,5 - 0,8%) и кремний (Si) - при содержании в стали (0,35 -0,50%) - раскисляют сталь при ее выплавке. Они придают ей плотность и однородность, упрочняют, делают более упругой и повышают сопротивление истиранию. Марганец парализует вредное действие серы, образуя с ней соединение, заметно повышает прочность горячекатанной стали и повышает порог хладноломкости стали. Кремний сильно повышает предел текучести, что снижает способность стали к вытяжке и особенно к холодной высадке. При повышении содержания кремния уменьшается порог хладноломкости.

Кремний и марганец попадают в железоуглеродистый сплав при его выплавке в процессе раскисления. Кремний и марганец удаляют из сплава закись железа.

Кремний, растворяясь в феррите, повышает предел текучести и уменьшает склонность к хладноломкости. Марганец образует твердый раствор с железом и немного повышает твердость и прочность. В присутствии серы он частично связывается с серой в сернистый марганец и переходит в шлак. Это способствует удалению серы из сплава, т.е. кремний и марганец являются полезными примесями. В железоуглеродистых сплавах обычно не более 0,35-0,4% Si и 0,5-0,8 Mn.

Сера (S) и фосфор (P) - вредные примеси. Они могут скапливаться в отдельных частях слитка или заготовки (чаще в центральной) и усиливать этим вредное действие.

Сера, являясь вредной примесью, образует сернистое железо FeS, которое нерастворимо в железе, и легкоплавкую эвтектику. При кристаллизации сплава легкоплавкая эвтектика располагается по границам зерен и при повторном нагреве расплавляется, в результате чего нарушается связь между зернами, что приводит к образованию трещин и надрывов. Это явление носит название красноломкости. Повышенное содержание серы в стали вызывает красноломкость (хрупкость при высоких температурах), поэтому допускается содержание серы в сталях до 0,035%-0,06% S.

Фосфор растворяется в железе, искажает кристаллическую решетку и ухудшает пластические свойства сплава. Фосфор является вредной примесью, так как повышенное содержание фосфора вызывает хладноломкость (хрупкость при обычных и пониженных температурах), и его содержание в сталях не должно превышать 0,025-0,08%.

Хром (Cr) - в углеродистую сталь попадает из шихты при выплавки стали в печах. При патентировании проволоки (вид термообработки проволоки) хром оказывает вредное действие, задерживающее термообрабтку. Поэтому его содержание ограничивают до 0,1 • 0,15%; В легированную сталь хром вводят для повышения ее прочности и прокаливаемости. В сочетании с никелем хром используется для производства нержавеющих и жаропрочных сплавов.

Никель (Ni) - при небольших содержаниях его - не оказывает вредного действия, но несколько задерживает процесс патентирования. В легированную сталь никель вводится для повышения вязкости, коррозионной стойкости и придания некоторых других качеств стали.

Азот (N), кислород (O) и водород (H) - присутствуют в стали в виде хрупких неметаллических включений. Они ухудшают механические свойства, снижают сроки службы изделий. Эти элементы присутствуют в сплавах или в виде хрупких неметаллических включений, например окислов FeO, SiO2, AI2O3, нитридов Fe4N, или в свободном состоянии. При этом они располагаются в дефектных местах в виде молекулярного и атомарного газов. Мелкие неметаллические включения образуются при раскислении стали, а крупные попадают в жидкую сталь из шлака, футеровки печи, материала желоба и ковша. Наибольший вред приносят крупные включения. Неметаллические соединения являются концентраторами напряжений и могут понизить механические свойства (прочность, пластичность)стали.

Водород поглощается сталью в атомарном состоянии. При охлаждении сплава растворимость водорода уменьшается, и его атомы накапливаются в микропорах. В результате этого в микропорах развивается большое давление. Таким образом, водород может явиться причиной образования внутренних надрывов в металле (флокенов).

Существует много прогрессивных методов выплавки железоуглеродистых сплавов, обеспечивающих уменьшение содержания кислорода, азота и водорода, что улучшает механические свойства сплавов.

 

18) Тема: Макроструктурный анализ металлов и сплавов

Макроанализ - исследование структуры металлов и сплавов невооруженым глазом или при увеличении до 30 раз через лупу. При макроанализе применяют два метода: метод изломов и метод макрошлифов. Метод изломов – позволяет установить характер предшествующей обработки металлов давлением, величину зерен, вид чугуна, дефекты внутреннего строения (поры, трещины и др.). Для изучения излома образцы ломают и место излома изучают визуально или пользуются лупой. Метод макрошлифов – дает возможность исследовать структуру, образующуюся в процессе кристаллизации или последующей обработки давлением. Этим способом можно выявить волокнистость, ликвацию серы и фосфора, различного вида дефекты: усадочную раковину, газовые пузыри, поры, трещины и др. Макрошлиф приготовляют шлифованием образца. Подготовленную поверхность травят соответствующим реактивом для выявления структуры. Волокнистость, возникающую при обработке металлов давлением, выявляют глубоким травлением одной отшлифованной стороны образца в сильных кислотах, нагретых до 70…1000С. При этом примеси, скопившиеся на границах зерен, растворяются быстрее основного металла, в результате чего образуется рельефная поверхность в виде тонких волокон. Волокнистость, повторяющаяся конфигурацию сечения детали, свидетельствует о правильной технологии горячей обработки давлением. При несоответствии расположения волокон контуру детали в местах перехода от одной конфигурации к другой создаются напряжения, сокращающие эксплуатационный срок ее службы.

 

21) превращения в сталях.виды закалочных структур.

Возможность упрочнения сталей путем термической обработки обусловлена наличием аллотропических превращений в твердом состоянии. Охлаждая сталь с различными скоростями и вызывая тем самым различную степень переохлаждения, можно получить продукты распада аустенита, резко отличающиеся по строению и свойствам.

Сорбит (первая закалочная структура), получающийся при низких скоростях охлаждения, представляет собой смесь феррита и цементита; он отличается от перлита более тонкодисперсным строением, твердость сорбита HRC 20. Стали с сорбитной структурой используются для изготовления нагруженных изделий.

Троостит (вторая закалочная структура) получается при средних скоростях охлаждения в результате распада переохлажденного аустенита при 500…550 °C, обладает значительной упругостью; представляет собой тонкодисперсную смесь феррита и цементита. Твердость троостита составляет HRC 30…40. Сталь со структурой троостита отличается высокими значениями прочности и упругости. Ее обычно используют для изготовления пружин и рессор.

Превращение аустенита в мартенсит происходит при очень быстром охлаждении. При этом фиксируется типичная для мартенсита игольчатая структура. Он представляет собой пересыщенный твердый раствор углерода в α-железе. Мартенсит – твердая и хрупкая структура; твердость его составляет HRC 62…66.

 

22) Поверхностная закалка состоит в нагреве поверхностного слоя стали выше Ас3 с последующим охлаждением для получения высокой твердости и прочности в поверхностном слое детали в сочетании с вязкой сердцевиной.

Для поверхностной закалки применяют обычно углеродистые стали, содержащие около 0.4 % С. Глубокая прокаливаемость при этом методе не используется, поэтому легированные стали обычно не применяют.

После закалки проводят низкий отпуск 200°С или самоотпуск.

После закалки и отпуска твердость стали на поверхности – 45-55 HRC, в сердцевине – 25-30HRC.

Нагрев под закалку проводят:

– в расплавленных металлах или солях,

– пламенем газовых или кислород-ацетиленовых горелок,

– лазерным излучением,

– токами высокой частоты (ТВЧ).

. Основное назначениеповерхностной закалки — повышение твердости, износостойкости и предела выносливости обрабатываемогоизделия. Сердцевина изделия остается вязкой и воспринимает ударные нагрузки. Чаще применяютповерхностную закалку с индукционным нагревом токами высокой частоты, предложенную В. П. Вологдинымв 1935 г. Этот способ нагрева отличается высокой производительностью, легко управляем и обеспечиваетхорошее качество закаленного слоя. Закаливаемая деталь помещается в индуктор (катушку), по которомупропускается ток высокой частоты, создающий переменное магнитное поле. В поверхностном слоеобрабатываемого изделия возникают вихревые токи и выделяется джоулево тепло. Ток проходит, восновном, в поверхностном слое проводника, и ~ 90 % тепла выделяется в этом слое толщиной γ = 5000√ ρ/μf см, которая зависит от электросопротивления ρ, Ом • см, нагреваемого металла, магнитной проницаемостиμ, Гс/Э, и частоты тока f, Гц. В последние годы все чаще начинают применять для нагрева изделий дляповерхностной закалки концентрированные излучения с высокой плотностью энергии (плазменные,лазерные, электронные лучи и др.). При их использовании поверхностная закалка может идти с оплавлениемповерхности, что обеспечивает формирование неравновесной структуры поверхностного слоя в результатеперехода из жидкого состояния в твердое. Реже, главным образом для крупных изделий, применяютповерхностную закалка с нагревом газовым пламенем. Требуемая глубина закаленного слоя, определяемаяразмерами и условиями работы детали, 0,5-3,0 мм. При поверхностной закалке твердость поверхностногослоя, как правило, выше достигаемой у той же стали при обычных способах закалки в связи с особенностямиструктуры аустенита, образующейся при быстром нагреве, и значительными напряжениями в поверхностно й зоне;

 

 

23)Старение стали — изменение свойств материала (стали), протекающее во времени без заметного изменения микроструктуры. Такие процессы происходят главным образом в низкоуглеродистых сталях (менее 0,25 % С). При старении за счёт скопления атомов углерода на дислокациях или выделения избыточных фаз и феррита (карбидов, нитридов) повышаются прочность, порог хладноломкости и снижается сопротивление хрупкому разрушению. Склонность стали к старению снижается при легировании её алюминием, титаном или ванадием.

Механическое или деформационное старение — это процесс, протекающий после пластической деформации, если она происходит ниже температуры пе рекристаллизации. Такое старение развивается в течение 15-16 суток при комнатной температуре и в течение нескольких минут при 200—350 °C. При нагреве деформированной стали возможно образование частиц карбидов и метастабильной нитридной фазы Fe16N2 или стабильного нитрида Fe4N. Развитие деформационного старения резко ухудшает штампуемость листовой стали, поэтому многие углеродистые стали подвергают обязательно испытаниям на склонность их к деформационному старению.

2.Для уменьшения количества остаточного аустенита в закаленной стали применяют обработку холодом, заключающуюся в охлаждении закаленной стали до отрицательных температур, до температуры ниже т. Мк (–80oС). Обычно для этого используют сухой лед.

Обработку холодом необходимо проводить сразу после закалки, чтобы не допустить стабилизации аустенита. Увеличение твердости после обработки холодом обычно составляет 1…4 HRC.

После обработки холодом сталь подвергают низкому отпуску, так как обработка холодом не снижает внутренних напряжений.

Обработке холодом подвергают детали шарикоподшипников, точных механизмов, измерительные инструменты.

 

 

24) Дефекты термической обработки стали

Нарушение в проведении термической обработки металлических изделий приводят к возникновению разнообразных дефектов. К основным дефектам закалки относятся: недогрев, перегрев, пережог, обезуглероживание, коробление, трещины и др.

Если нагрев стали был ниже критической точки, то говорят о закалке с недогревом. Этот дефект исправимый, для чего сталь подвергают отжигу, а затем проводят закалку в соответствии с технологическими рекомендациями.

Перегрев имеет место тогда, когда сталь нагревают до температуры, намного превышающей критическую. Перегрев также можно исправить отжигом с последующей закалкой.

Пережог стали может иметь место при значительном перегреве стали перед закалкой. При этом сталь становится очень хрупкой. Этот дефект неисправимый (брак).

Обезуглероживание и окисление поверхности происходит при нагреве в пламенных или электрических печах без контролируемых атмосфер. Чтобы избежать этих дефектов, надо нагрев вести в специальных печах с защитной (контролируемой) атмосферой, нейтральной по отношению к сталям.

Закалка стали сопровождается увеличением ее объема, что приводит к значительным внутренним напряжениям, которые являются причиной образования трещин и коробления. Трещины являются неисправимым дефектом, а коробления можно устранить последующей рихтовкой или правкой.

 



Поделиться:


Последнее изменение этой страницы: 2016-04-25; просмотров: 1273; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.23.123 (0.017 с.)